参考文献/References:
[1] BEN HALIMA N. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation[J]. RSC Advances, 2016, 6(46): 39823-39832.
[2] 苏扬帆, 葛明桥. 高级氧化技术处理聚乙烯醇废水研究综述[J]. 浙江纺织服装职业技术学院学报, 2017, 16(3): 19-26.
SU Yangfan, GE Mingqiao. On the advanced oxidation technologies in the treatment of polyvinyl alcohol wastewater[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(3): 19-26.(in Chinese)
[3] ZHANG Y, ZHU G F, GE M Q. Degradation of PVA wastewater by CuxMnxFe3-2xO4/MWCNT catalyst[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 18616-18627.
[4] 马宏鹏, 张鑫, 秦文博, 等. 聚乙烯醇纤维成纤前后改性方法的研究进展[J]. 化工进展, 2022, 41(6): 3063-3076.
MA Hongpeng, ZHANG Xin, QIN Wenbo, et al. Research progress of different modification methods of polyvinyl alcohol fiber before and after fiber formation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3063-3076.(in Chinese)
[5] 苏扬帆,李梦娟,曹堉斌,等.高级氧化技术处理纺织服装用聚乙烯醇废弃物[J].服装学报,2016,1(4):363-368.
SU Yangfan,LI Mengjuan,CAO Yubin,et al. Treatment of poly(vinyl alcohol)water produced from textile industry by using advanced oxidation technologies[J].Journal of Clothing Research,2016,1(4):363-368.(in Chinese)
[6] 刘赛, 高强, 葛明桥. 臭氧氧化技术降解高浓度PVA废水的研究[J]. 化学工程, 2018, 46(9): 12-16, 72.
LIU Sai, GAO Qiang, GE Mingqiao. Degradation of high concentration PVA wastewater by ozonation[J]. Chemical Engineering(China), 2018, 46(9): 12-16, 72.(in Chinese)
[7] 陈理, 张海霞, 郑增光. 高强度维纶可纺性能研究[J]. 棉纺织技术, 2017, 45(12): 1- 4.
CHEN Li, ZHANG Haixia, ZHENG Zengguang. Study on spinnability of high intensity vinylon[J]. Cotton Textile Technology, 2017, 45(12): 1- 4.(in Chinese)
[8] 张硕. 高性能维纶在特种工装面料上的应用[D]. 上海: 东华大学.
[9] 马海景, 曲洪建. 疫情防控期间医用防护服的供需形势及生产建议[J]. 服装学报, 2020, 5(3): 277-282.
MA Haijing, QU Hongjian. Supply and demand situation of medical protective clothing and production suggestions during epidemic prevention and control[J]. Journal of Clothing Research, 2020, 5(3): 277-282.(in Chinese)
[10] MATVEYEVA A N, PAKHOMOV N A, MURZIN D Y. Recycling of wastes from the production of alumina-based catalyst carriers[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9101-9108.
[11] 曹扬. Fenton氧化法降解聚乙烯醇的条件确定及机理初探[D]. 无锡: 江南大学, 2005.
[12] 苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281.
SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn, Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281.(in Chinese)
[13] 苏扬帆, 葛明桥. Mn/γ-Al2O3纳米颗粒催化双氧水降解水溶性PVA废弃面料[J]. 浙江纺织服装职业技术学院学报, 2017, 16(4): 8-16, 32.
SU Yangfan, GE Mingqiao. Degradation of water soluble PVA waste fabrics by hydrogen peroxide catalyzed by Mn/γ-Al2O3 nanoparticles[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(4): 8-16, 32.(in Chinese)
[14] ZHOU X Q, LUO C G, WANG J, et al. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation[J]. Science of the Total Environment, 2021, 762: 143120.
[15] 苏扬帆. 过渡金属氧化物/纳米γ-Al2O3催化降解PVA的研究[D]. 无锡: 江南大学, 2018.
[16] JOSHI A, NERKAR P. Determination of proton pump inhibitors by spectrophotometric, chromatographic and by hyphenated techniques: a review[J]. Critical Reviews in Analytical Chemistry, 2020, 51: 527-548.
[17] 顾润南, 林苗. 退浆废水中聚乙烯醇(PVA)含量的测定[J]. 东华大学学报(自然科学版), 2005, 31(2): 106-109.
GU Runnan, LIN Miao. Determination of PVA content in desizing wastewater[J]. Journal of Donghua University(Natural Science), 2005, 31(2): 106-109.(in Chinese)
[18] 陈荣平, 张兴. 废水中聚乙烯醇的分光光度法测定[J]. 北方环境, 2004, 29(4): 68-70.
CHEN Rongping, ZHANG Xing. Spectrophotometric determination of polyvinyl alcohol in wastewater[J]. North Environment, 2004, 29(4): 68-70.(in Chinese)
[19] 冯玉坤. 微波诱导金属放电催化降解挥发性有机物的试验及机理研究[D]. 济南: 山东大学, 2020.
[20] 陈舒棋, 宋卫锋, 丘通强, 等. Mn-Co-Ce/γ-Al2O3臭氧催化氧化奶牛养殖废水及其机理[J]. 农业环境科学学报, 2022, 41(4): 868-877.
CHEN Shuqi, SONG Weifeng, QIU Tongqiang, et al. Catalytic ozonation of dairy wastewater using Mn-Co-Ce/γ-Al2O3 and its mechanism[J]. Journal of Agro-Environment Science, 2022, 41(4): 868-877.(in Chinese)
[21] 张滨. Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究[D]. 大连: 大连理工大学, 2016.
[22] ZENG Y X, LAI Z Z, HAN Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ionbatteries[J]. Advanced Materials, 2018, 30(33):1802396.
[23] ZHU G F, JIN Y, GE M Q. Simple preparation of a CuO@γ-Al2O3 Fenton-like catalyst and its photocatalytic degradation function[J].
Environmental Science and Pollution Research, 2022, 29(45): 68636- 68651.
[24] DEY S, CHANDRA DHAL G, MOHAN D, et al. Synthesis of silver promoted CuMnOx catalyst for ambient temperature oxidation of carbon monoxide[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(1): 47-56.
[25] LI Y B, JAWAD A, KHAN A, et al. Synergistic degradation of phenols by bimetallic CuO-Co3O4@γ-Al2O-3 catalyst in H2O2/HCO3- system[J]. Chinese Journal of Catalysis, 2016, 37(6): 963-970.
[26] D’ ESPINOSE DE LA CAILLERIE J B, KERMAREC M, CLAUSE O. Impregnation of gamma-alumina with Ni(II)or Co(II)ions at neutral pH: hydrotalcite-type coprecipitate formation and characterization[J]. Journal of the American Chemical Society, 1995, 117(46): 11471-11481.
[27] SHUKLA P, SUN H Q, WANG S B, et al. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water[J]. Separation and Purification Technology, 2011, 77(2): 230-236.
[28] CHALIHA S, BHATTACHARYYA K G. Wet oxidative method for removal of 2, 4, 6-trichlorophenol in water using Fe(III), Co(II), Ni(II)supported MCM41 catalysts[J]. Journal of Hazardous Materials, 2008, 150(3): 728-736.
[29] SU Y F, LI M J, GAO Q, et al. Degradation and kinetic modeling of polyvinyl alcohol in aqueous solutions by a H2O2/Mn(II)system[J]. Fibers and Polymers, 2017, 18(12): 2269-2277.
[30] 闫征楚. 复合金属氧化物非均相催化氧化降解水中聚乙烯醇的研究[D]. 长春: 吉林大学, 2020.
[31] PANG H W, WANG Y Q, WU Y, et al. Unveiling the pH-dependent yields of H2O2 and OH by aqueous-phase ozonolysis of m-cresol in the atmosphere[J]. Environmental Science and Technology, 2022, 56(12): 7618-7628.
[32] STANBURY D M. The principle of detailed balancing, the iron-catalyzed disproportionation of hydrogen peroxide, and the Fenton reaction[J]. Dalton Transactions, 2022, 51(6): 2135-2157.
[33] WANG C Q, YANG J P, HUANG R, et al. Mechanical activation of natural chalcopyrite for improving heterogeneous Fenton degradation of tetracycline[J]. Journal of Central South University, 2022, 29(12): 3884-3895.
[34] 王婷, 郭昊, 杨武, 等. 气体吸附与储存的新材料: COFs的发展及应用[J]. 化工新型材料, 2017, 45(10): 4-7.
WANG Ting, GUO Hao, YANG Wu, et al. New material for gas adsorption and storage: development and application of COFs[J]. New Chemical Materials, 2017, 45(10): 4-7.(in Chinese)
(责任编辑:沈天琦)