[1]朱亚楠,韩清河,张欣宇,等.MnxOy@γ-Al2O3催化剂的回收及其再次降解性能[J].服装学报,2023,8(06):471-479.
 ZHU Yanan,HAN Qinghe,ZHANG Xinyu,et al.Recovery of MnxOy@γ-Al2O3 Catalyst and Its Re-Degradation Performance[J].Journal of Clothing Research,2023,8(06):471-479.
点击复制

MnxOy@γ-Al2O3催化剂的回收及其再次降解性能()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第8卷
期数:
2023年06期
页码:
471-479
栏目:
服装材料
出版日期:
2023-12-31

文章信息/Info

Title:
Recovery of MnxOy@γ-Al2O3 Catalyst and Its Re-Degradation Performance
作者:
朱亚楠1;  韩清河1;  张欣宇2;  孙同明2;  李 莘3
1.江南大学 纺织科学与工程学院,江苏 无锡 214122; 2.国家先进印染技术创新中心,山东 泰安 271000; 3.四川省纤维检验局,四川 成都 610015
Author(s):
ZHU Yanan1;  HAN Qinghe1;  ZHANG Xinyu2;  SUN Tongming2;  LI Shen3
1.College of Textile Science and Engineering,Jiangnan University,Wuxi 214122,China; 2. National Advanced Techno-logy Innovation Center of Dyeing and Finishing,Tai’an 271000,China; 3.Sichuan Province Fiber Inspection Bureau,Chengdu 610015,China
分类号:
X 791; TS 102.52.4
文献标志码:
A
摘要:
为了探究回收催化剂催化降解聚乙烯醇的性能,采用物理法回收1次降解聚乙烯醇的催化剂MnxOy@γ-Al2O3,借助扫描电子显微镜、X射线衍射仪、傅里叶变换红外光谱仪、紫外分光光度计等对回收催化剂的结构和聚乙烯醇降解性能进行表征与分析。结果表明:回收催化剂中仍存在活性物质锰; 回收催化剂对聚乙烯醇的降解效果略有下降; 当pH=3,H2O2体积分数为15%,催化剂质量浓度为500 mg/L,反应温度为80 ℃时的降解效果较好,聚乙烯醇的降解率达到96%以上,降解产物的黏均分子量为2 205。研究结果为催化剂MnxOy@γ-Al2O3的回收及利用提供参考。
Abstract:
To investigate the performance of recycled catalysts for the degradation of polyvinyl alcohol, a physical method was used to recover the catalyst(MnxOy@γ-Al2O3)for the primary degradation of polyvinyl alcohol. The structure of the recovered catalyst and polyvinyl alcohol degradation performance were characterized and analyzed by scanning electron microscopy, X-ray diffractometer, Fourier transform infrared spectrometer and ultraviolet spectrophotometer. The results show that the active material manganese is still existed in the recovered catalyst and the degradation effect of recycled catalyst on polyvinyl alcohol is slightly decreased. When the degradation condition is controlled at pH=3, H2O2 volume fraction of 15%, catalyst mass concentration of 500 mg/L, temperature of 80 ℃, the degradation rate reaches more than 96%, and the molecular weight of the degradation product is around 2 205 g/mol. The results of the above study provide a reference for the recovery and utilization of the catalyst MnxOy@γ-Al2O3.

参考文献/References:

[1] BEN HALIMA N. Poly(vinyl alcohol): review of its promising applications and insights into biodegradation[J]. RSC Advances, 2016, 6(46): 39823-39832.
[2] 苏扬帆, 葛明桥. 高级氧化技术处理聚乙烯醇废水研究综述[J]. 浙江纺织服装职业技术学院学报, 2017, 16(3): 19-26.
SU Yangfan, GE Mingqiao. On the advanced oxidation technologies in the treatment of polyvinyl alcohol wastewater[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(3): 19-26.(in Chinese)
[3] ZHANG Y, ZHU G F, GE M Q. Degradation of PVA wastewater by CuxMnxFe3-2xO4/MWCNT catalyst[J]. Journal of Materials Science: Materials in Electronics, 2021, 32(14): 18616-18627.
[4] 马宏鹏, 张鑫, 秦文博, 等. 聚乙烯醇纤维成纤前后改性方法的研究进展[J]. 化工进展, 2022, 41(6): 3063-3076.
MA Hongpeng, ZHANG Xin, QIN Wenbo, et al. Research progress of different modification methods of polyvinyl alcohol fiber before and after fiber formation[J]. Chemical Industry and Engineering Progress, 2022, 41(6): 3063-3076.(in Chinese)
[5] 苏扬帆,李梦娟,曹堉斌,等.高级氧化技术处理纺织服装用聚乙烯醇废弃物[J].服装学报,2016,1(4):363-368.
SU Yangfan,LI Mengjuan,CAO Yubin,et al. Treatment of poly(vinyl alcohol)water produced from textile industry by using advanced oxidation technologies[J].Journal of Clothing Research,2016,1(4):363-368.(in Chinese)
[6] 刘赛, 高强, 葛明桥. 臭氧氧化技术降解高浓度PVA废水的研究[J]. 化学工程, 2018, 46(9): 12-16, 72.
LIU Sai, GAO Qiang, GE Mingqiao. Degradation of high concentration PVA wastewater by ozonation[J]. Chemical Engineering(China), 2018, 46(9): 12-16, 72.(in Chinese)
[7] 陈理, 张海霞, 郑增光. 高强度维纶可纺性能研究[J]. 棉纺织技术, 2017, 45(12): 1- 4.
CHEN Li, ZHANG Haixia, ZHENG Zengguang. Study on spinnability of high intensity vinylon[J]. Cotton Textile Technology, 2017, 45(12): 1- 4.(in Chinese)
[8] 张硕. 高性能维纶在特种工装面料上的应用[D]. 上海: 东华大学.
[9] 马海景, 曲洪建. 疫情防控期间医用防护服的供需形势及生产建议[J]. 服装学报, 2020, 5(3): 277-282.
MA Haijing, QU Hongjian. Supply and demand situation of medical protective clothing and production suggestions during epidemic prevention and control[J]. Journal of Clothing Research, 2020, 5(3): 277-282.(in Chinese)
[10] MATVEYEVA A N, PAKHOMOV N A, MURZIN D Y. Recycling of wastes from the production of alumina-based catalyst carriers[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9101-9108.
[11] 曹扬. Fenton氧化法降解聚乙烯醇的条件确定及机理初探[D]. 无锡: 江南大学, 2005.
[12] 苏扬帆, 李梦娟, 葛明桥. Fe、Mn、Cu及其复合负载γ-Al2O3纳米颗粒的制备、表征和催化降解PVA性能[J]. 环境化学, 2018, 37(6): 1272-1281.
SU Yangfan, LI Mengjuan, GE Mingqiao. Preparation, characterization and catalytic performance of Fe, Mn, Cu and complex metallic oxides supported on γ-Al2O3[J]. Environmental Chemistry, 2018, 37(6): 1272-1281.(in Chinese)
[13] 苏扬帆, 葛明桥. Mn/γ-Al2O3纳米颗粒催化双氧水降解水溶性PVA废弃面料[J]. 浙江纺织服装职业技术学院学报, 2017, 16(4): 8-16, 32.
SU Yangfan, GE Mingqiao. Degradation of water soluble PVA waste fabrics by hydrogen peroxide catalyzed by Mn/γ-Al2O3 nanoparticles[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(4): 8-16, 32.(in Chinese)
[14] ZHOU X Q, LUO C G, WANG J, et al. Recycling application of modified waste electrolytic manganese anode slag as efficient catalyst for PMS activation[J]. Science of the Total Environment, 2021, 762: 143120.
[15] 苏扬帆. 过渡金属氧化物/纳米γ-Al2O3催化降解PVA的研究[D]. 无锡: 江南大学, 2018.
[16] JOSHI A, NERKAR P. Determination of proton pump inhibitors by spectrophotometric, chromatographic and by hyphenated techniques: a review[J]. Critical Reviews in Analytical Chemistry, 2020, 51: 527-548.
[17] 顾润南, 林苗. 退浆废水中聚乙烯醇(PVA)含量的测定[J]. 东华大学学报(自然科学版), 2005, 31(2): 106-109.
GU Runnan, LIN Miao. Determination of PVA content in desizing wastewater[J]. Journal of Donghua University(Natural Science), 2005, 31(2): 106-109.(in Chinese)
[18] 陈荣平, 张兴. 废水中聚乙烯醇的分光光度法测定[J]. 北方环境, 2004, 29(4): 68-70.
CHEN Rongping, ZHANG Xing. Spectrophotometric determination of polyvinyl alcohol in wastewater[J]. North Environment, 2004, 29(4): 68-70.(in Chinese)
[19] 冯玉坤. 微波诱导金属放电催化降解挥发性有机物的试验及机理研究[D]. 济南: 山东大学, 2020.
[20] 陈舒棋, 宋卫锋, 丘通强, 等. Mn-Co-Ce/γ-Al2O3臭氧催化氧化奶牛养殖废水及其机理[J]. 农业环境科学学报, 2022, 41(4): 868-877.
CHEN Shuqi, SONG Weifeng, QIU Tongqiang, et al. Catalytic ozonation of dairy wastewater using Mn-Co-Ce/γ-Al2O3 and its mechanism[J]. Journal of Agro-Environment Science, 2022, 41(4): 868-877.(in Chinese)
[21] 张滨. Fe-Cr合金溅射纳米晶薄膜腐蚀电化学行为的XPS及第一性原理计算的研究[D]. 大连: 大连理工大学, 2016.
[22] ZENG Y X, LAI Z Z, HAN Y, et al. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced Zn-ionbatteries[J]. Advanced Materials, 2018, 30(33):1802396.
[23] ZHU G F, JIN Y, GE M Q. Simple preparation of a CuO@γ-Al2O3 Fenton-like catalyst and its photocatalytic degradation function[J].
Environmental Science and Pollution Research, 2022, 29(45): 68636- 68651.
[24] DEY S, CHANDRA DHAL G, MOHAN D, et al. Synthesis of silver promoted CuMnOx catalyst for ambient temperature oxidation of carbon monoxide[J]. Journal of Science: Advanced Materials and Devices, 2019, 4(1): 47-56.
[25] LI Y B, JAWAD A, KHAN A, et al. Synergistic degradation of phenols by bimetallic CuO-Co3O4@γ-Al2O-3 catalyst in H2O2/HCO3- system[J]. Chinese Journal of Catalysis, 2016, 37(6): 963-970.
[26] D’ ESPINOSE DE LA CAILLERIE J B, KERMAREC M, CLAUSE O. Impregnation of gamma-alumina with Ni(II)or Co(II)ions at neutral pH: hydrotalcite-type coprecipitate formation and characterization[J]. Journal of the American Chemical Society, 1995, 117(46): 11471-11481.
[27] SHUKLA P, SUN H Q, WANG S B, et al. Nanosized Co3O4/SiO2 for heterogeneous oxidation of phenolic contaminants in waste water[J]. Separation and Purification Technology, 2011, 77(2): 230-236.
[28] CHALIHA S, BHATTACHARYYA K G. Wet oxidative method for removal of 2, 4, 6-trichlorophenol in water using Fe(III), Co(II), Ni(II)supported MCM41 catalysts[J]. Journal of Hazardous Materials, 2008, 150(3): 728-736.
[29] SU Y F, LI M J, GAO Q, et al. Degradation and kinetic modeling of polyvinyl alcohol in aqueous solutions by a H2O2/Mn(II)system[J]. Fibers and Polymers, 2017, 18(12): 2269-2277.
[30] 闫征楚. 复合金属氧化物非均相催化氧化降解水中聚乙烯醇的研究[D]. 长春: 吉林大学, 2020.
[31] PANG H W, WANG Y Q, WU Y, et al. Unveiling the pH-dependent yields of H2O2 and OH by aqueous-phase ozonolysis of m-cresol in the atmosphere[J]. Environmental Science and Technology, 2022, 56(12): 7618-7628.
[32] STANBURY D M. The principle of detailed balancing, the iron-catalyzed disproportionation of hydrogen peroxide, and the Fenton reaction[J]. Dalton Transactions, 2022, 51(6): 2135-2157.
[33] WANG C Q, YANG J P, HUANG R, et al. Mechanical activation of natural chalcopyrite for improving heterogeneous Fenton degradation of tetracycline[J]. Journal of Central South University, 2022, 29(12): 3884-3895.
[34] 王婷, 郭昊, 杨武, 等. 气体吸附与储存的新材料: COFs的发展及应用[J]. 化工新型材料, 2017, 45(10): 4-7.
WANG Ting, GUO Hao, YANG Wu, et al. New material for gas adsorption and storage: development and application of COFs[J]. New Chemical Materials, 2017, 45(10): 4-7.(in Chinese)
(责任编辑:沈天琦)

更新日期/Last Update: 2023-12-30