[1]张士进,刘 红,田明伟*.消防服智能化改进的研究进展[J].服装学报,2023,8(04):323-329.
 ZHANG Shijin,LIU Hong,TIAN Mingwei*.Research Progress of Intelligent Improvement of Firefighting Clothing[J].Journal of Clothing Research,2023,8(04):323-329.
点击复制

消防服智能化改进的研究进展()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第8卷
期数:
2023年04期
页码:
323-329
栏目:
智能服装
出版日期:
2023-08-30

文章信息/Info

Title:
Research Progress of Intelligent Improvement of Firefighting Clothing
作者:
张士进;  刘 红;  田明伟*
青岛大学 纺织服装学院,山东 青岛 266071
Author(s):
ZHANG Shijin;  LIU Hong;  TIAN Mingwei*
College of Textiles and Clothing,Qingdao University, Qingdao 266071, China
分类号:
TS 941.733
文献标志码:
A
摘要:
因消防服性能缺陷导致消防员受伤的情况时有发生,传统消防服急需智能化改进,以满足日益增加的性能需求。通过深入分析传统消防服的智能化改进需求,从4个方面总结了采用新型材料和功能化模块对消防服智能化改进的方法。在热防护需求方面,利用PCM吸收/释放潜热的特性可以实现温度调节; 在安全预警需求方面,碳纳米管、石墨烯等材料因在高温下电阻下降的特性常被用于高温预警; 在位置信息定位需求方面,GPS等定位模块的集成使消防员在火场中的位置信息更加明确; 在自供电需求方面,T-TENG有望代替传统外部电源应用于消防服。在此基础上对消防服的智能化改进进行展望,提出未来可能的发展方向。
Abstract:
Firefighters occasionally sustain injuries due to performance defects in firefighting clothing. Therefore, the clothing need to be improved, to meet the escalating performance requirements. Through an in-depth analysis of the demand for intelligent improvement of traditional firefighting clothing, the methods of intelligent improvement of firefighting clothing by new materials and functionalized modules are summarized from four aspects. For thermal protection demand, the use of PCM to absorb/release latent heat can achieve temperature regulation. For safety warning demand, CNTs, graphene and other materials are often used for high-temperature warning due to the characteristic of decreased resistance at high temperatures. For location information positioning demand, the integration of GPS and other positioning modules makes the firefighters’ positional information in a fire scene more explicit. For self-powered demand, T-TENG is expected to replace the traditional external power supply applied to firefighting clothing. On this basis, the intelligent improvement of firefighting clothing is prospected and possible future development directions are proposed.

参考文献/References:

[1] ZHANG G Y, LU L H, SHI C L, et al. The study of coupling effects of humidity-heat on the protection performance of protective clothing for fire fighting[J]. Fire and Materials, 2020, 44(7): 923-934.
[2] HE H L, LIU J R, WANG Y S, et al. An ultralight self-powered fire alarm e-textile based on conductive aerogel fiber with repeatable temperature monitoring performance used in firefighting clothing[J]. ACS Nano, 2022, 16(2): 2953-2967.
[3] SHI J D, LIU S, ZHANG L S, et al. Smart textile-integrated microelectronic systems for wearable applications[J].Adv Mater, 2020,32(5):1901958.
[4] WANG X J, JIANG Y M, XU S Y, et al. Fiber bragg grating-based smart garment for monitoring human body temperature[J]. Sensors(Basel, Switzerland), 2022, 22(11): 4252.
[5] XU R D, QU L J, TIAN M W. Touch-sensing fabric encapsulated with hydrogel for human-computer interaction[J]. Soft Matter, 2021, 17(40): 9014-9018.
[6] HU X L, TIAN M W, XU T L, et al. Multiscale disor-dered porous fibers for self-sensing and self-cooling integrated smart sportswear[J].ACS Nano, 2020,14(1):559-567.
[7] KARABULUT E, BAHADlR S K. Signal transfer via smart conductive networks for high temperature performing wearable electronics[J]. Journal of Materials Science: Materials in Electronics, 2020, 31(18): 15996-16007.
[8] GUO Z G, SUN C, WANG J, et al. High-performance laminated fabric with enhanced photothermal conversion and joule heating effect for personal thermal management[J]. ACS Applied Materials and Interfaces, 2021, 13(7): 8851-8862.
[9] 谢浩月, 梅鑫, 唐虹, 等. 智能消防服的研制与演示[J]. 上海纺织科技, 2021, 49(3):11-14,18.
XIE Haoyue, MEI Xin, TANG Hong, et al.Development and demonstration of inttelligent firefighting protective clothing[J]. Shanghai Textile Science and Technology, 2021, 49(3):11-14,18.(in Chinese)
[10] 邵建章.消防员职业热应激危害与防控[J].武警学院学报,2015,31(6):31-34.
SHAO Jianzhang. Countermeasures for heat stress of firefighters during emergency operations and trainging exercises[J]. Journal of The Armed Police Academy, 2015,31(6):31-34.(in Chinese)
[11] FONSECA A, MAYOR T, CAMPOS J. Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles[J]. Applied Thermal Engineering, 2018, 133: 81-96.
[12] ZHANG H, LIU X F, SONG G W, et al. Effects of microencapsulated phase change materials on the thermal behavior of multilayer thermal protective clothing[J]. The Journal of the Textile Institute, 2021, 112(6): 1004-1013.
[13] SHAKERIASKI F, GHODRAT M, RASHIDI M, et al. Smart coating in protective clothing for firefighters: an overview and recent improvements[J]. Journal of Industrial Textiles, 2022, 51(Sup5): 7428-7454.
[14] PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419.
[15] SU Y,FAN Y W,MA Y L, et al. Flame-retardant phase change material(PCM)for thermal protective application in firefighting protective clothing[J]. International Journal of Thermal Sciences, 2023, 185: 108075.
[16] 韦玉辉, 王志恒, 王鹏, 等, 一种安全智能防护消防服装:202210524302.3 [P]. 2022-07-08.
[17] SANTOS G, MARQUES R, RIBEIRO J, et al. Fire-fighting: challenges of smart PPE[J]. Forests, 2022, 13(8): 1319.
[18] IIJIMA S. Helical microtubules of graphitic carbon[J]. Nature, 1991, 354(6348): 56-58.
[19] LIU L, HAN J, XU L, et al. Aligned, high-density semiconducting carbon nanotube arrays for high-performance electronics[J]. Science, 2020, 368(6493): 850-856.
[20] 李洪雪, 黄启忠, 王绍斌, 等. 石墨烯对铁基金属结合剂金刚石磨具性能的影响[J]. 硅酸盐通报, 2023, 42(3): 1048-1053, 1121.
LI Hongxue, HUANG Qizhong, WANG Shaobin, et al. Effect of graphene on performance of Fe-based metal binder diamond abrasive tools[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(3): 1048-1053, 1121.(in Chinese)
[21] SUN B, LIU J, CAO A M, et al. Interfacial synthesis of ordered and stable covalent organic frameworks on amino-functionalized carbon nanotubes with enhanced electrochemical performance[J]. Chemical Communications, 2017, 53(47): 6303- 6306.
[22] ZHU J, SONG Y T, WANG J C, et al. A highly flame-retardant, agile fire-alarming and ultrasensitive cotton fabric-based piezoresistive sensor for intelligent fire system[J]. Polymer Degradation and Stability, 2023, 211: 110338.
[23] WANG Y S, LIU J R, ZHAO Y H, et al. Temperature-triggered fire warning PEG@wood powder/carbon nanotube/calcium alginate composite aerogel and the application for firefighting clothing[J]. Composites Part B: Engineering, 2022, 247: 110348.
[24] CAO C F, YU B, CHEN Z Y, et al. Fire intumescent, high-temperature resistant, mechanically flexible graphene oxide network for exceptional fire shielding and ultra-fast fire warning[J]. Nano-Micro Letters, 2022, 14(1): 92.
[25] XU Y Y, HUANG L Y, LONG J, et al.Reversible thermochromic POSS-metal films for early warning[J].Composites Science and Technology, 2022,217:109083.
[26] 谢浩月, 唐虹, 顾琳燕, 等. 基于温湿度监测功能的智能消防内衣研究[J]. 针织工业, 2019(5):58- 62.
XIE Haoyue, TANG Hong, GU Linyan, et al. Study on smart fire-fighting underwear based on temperature and humidity monitoring function[J]. Knitting Industries, 2019(5):58- 62.(in Chinese)
[27] 姜文涛, 陈昌, 蔡燕, 等, 一种多个体多参数多传感的消防员智能体能预警监测装置:201510784049.5 [P]. 2016-01-13.
[28] LUO Y, MIAO Y P, WANG H M, et al. Laser-induced Janus graphene/poly(p-phenylene benzobisoxazole)fabrics with intrinsic flame retardancy as flexible sensors and breathable electrodes for fire-fighting field[J]. Nano Research, 2023, 16(5): 7600-7608.
[29] 禤永哲, 詹万汇, 陈少锋, 等. 基于物联网的消防指挥系统[J]. 现代计算机, 2018(9):75-79.
XUAN Yongzhe, ZHAN Wanhui, CHEN Shaofeng, et al. Fire rescue command system based on the internet of things[J]. Modern Computer, 2018(9):75-79.(in Chinese)
[30] 张鹏,李增,兰月新,等.大数据背景下消防应急救援指挥决策平台的构建[J].内江科技,2017,38(8):48- 49,37.
ZHANG Peng, LI Zeng, LAN Yuexin, et al. The construction of fire emergency rescue command and decision-making platform under the background of big data[J]. Neijiang Technology, 2017,38(8):48- 49,37.(in Chinese)
[31] 林建琴,许武军,李媛媛.基于智能服装的消防员位置信息融合研究[J].武汉纺织大学学报,2015,28(6):61- 66.
LIN Jianqin, XU Wujun, LI Yuanyuan.Study on the fusion of the information of the firefighters’ position based on the smart textiles[J]. Journal of Wuhan University of Science and Engineering,2015,28(6):61- 66.(in Chinese)
[32] CHENG R W, DONG K, LIU L X, et al. Flame-retardant textile-based triboelectric nanogenerators for fire protection applications[J]. ACS Nano, 2020, 14(11): 15853-15863.(责任编辑:邢宝妹)

相似文献/References:

[1]田 悦,王宏付*.智能服装研究[J].服装学报,2017,2(02):123.
 TIAN Yue,WANG Hongfu*.Rview of Smart Cloth[J].Journal of Clothing Research,2017,2(04):123.
[2]王朝晖,程宁波.智能服装的应用现状及发展方向[J].服装学报,2021,6(05):451.
 WANG Zhaohui,CHENG Ningbo,et al.Application and Development Trends of Smart Clothing[J].Journal of Clothing Research,2021,6(04):451.
[3]沈 雷,孙 湉.智能可穿戴领域研究现状和发展趋势[J].服装学报,2023,8(02):125.
 SHEN Lei,SUN Tian.Intelligent Wearable Research Status and Its Development Trend[J].Journal of Clothing Research,2023,8(04):125.
[4]许 君,温宇航,李宜潼,等.基于柔性传感器的呼吸监测智能服装[J].服装学报,2024,9(05):464.
 XU Jun,WEN Yuhang,LI Yitong,et al.Smart Clothing for Respiratory Monitoring Based on Flexible Sensor[J].Journal of Clothing Research,2024,9(04):464.

更新日期/Last Update: 2023-08-30