[1]李 俊,管曼好.热防护服装发展现状及趋势[J].服装学报,2020,5(01):21-30.
 LI Jun,GUAN Manhao.Development Status and Trends of Thermal Protective Clothing[J].Journal of Clothing Research,2020,5(01):21-30.
点击复制

热防护服装发展现状及趋势()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第5卷
期数:
2020年01期
页码:
21-30
栏目:
服装工程技术
出版日期:
2020-02-29

文章信息/Info

Title:
Development Status and Trends of Thermal Protective Clothing
作者:
李 俊1; 2;  管曼好1
1.东华大学 服装与艺术设计学院,上海 200051; 2.东华大学 现代服装设计与技术教育部重点实验室,上海 200051
Author(s):
LI Jun1; 2;  GUAN Manhao1
1.College of Fashion and Design,Donghua University,Shanghai 200051,China; 2.Key Laboratory of Clothing Design and Technology,Ministry of Education,Donghua University,Shanghai 200051,China
分类号:
TS 941.731.3
文献标志码:
A
摘要:
从阻燃纤维、热防护面料和热防护服装3个方面对热防护服装的构成进行阐述,讨论热防护服装性能的主要测评和研究方法,包括织物和服装的热防护性能、织物和服装的热生理性能以及服装的工效性能。根据热防护服装的研究现状,指出热防护服装的未来发展方向,主要涉及热防护材料开发、热防护服装综合性能的开发与测评、热防护服装智能化设计及热防护服装开发与测评标准的发展。
Abstract:
This paper described the thermal protective clothing from the three aspects of flame retardant fiber, thermal protective fabric and thermal protective clothing. It discussed the main evaluation and research methods of thermal protective clothing performance, including clothing and fabric thermal protective performance, clothing and fabric thermo-physiological effect, and clothing ergonomic performance. According to the research status of thermal protective clothing, the future development directions of thermal protective clothing were discussed, mainly involving the development of thermal protective materials, the development and evaluation of comprehensive performance of thermal protective clothing, the intelligent design of thermal protective clothing, and standards of the development and evaluation of thermal protective clothing.

参考文献/References:

[1] HORROCKS A R.Developments in flame retardants for heat and fire resistant textiles—the role of char formation and intumescence[J].Polymer Degradation and Stability, 1996,54(6): 143-154.[2] SONG G,MANDAL S,ROSSI R M.Thermal protective clothing for firefighters [M].Cambridge: Woodhead Publi-shing,2017:27-55.
[3] BAJAJ P.Fire-retardant materials[J].Bulletin of Materials Science,1992,15(1):67-76.
[4] 邹振高,王西亭,施楣梧.常规阻燃纤维的技术现状与发展趋势[J].纺织导报,2006(3):45- 49.
ZOU Zhengao,WANG Xiting,SHI Meiwu.The present and future of conventional flame-retardant fibers[J].China Textile Leader,2006(3):45- 49.(in Chinese)
[5] 陈沁,赵涛.阻燃纤维及纺织品的研究进展[J].印染,2015,41(5): 49-54.
CHEN Qin,ZHAO Tao.Research development of flame retardant fibers and textiles[J].Dyeing and Finishing,2015,41(5): 49-54.(in Chinese)
[6] TORVI D A,HADJISOPHOCLEUS G V. Research in protec-tive clothing for firefighters: state of the art and future directions[J]. Fire Technology,1999,35(2):111-130.
[7] 卢业虎, 高温液体环境下热防护服装热湿传递与皮肤烧伤预测 [D]. 上海:东华大学,2013.
[8] LU Y,SONG G,ACKERMAN M Y,et al.A new protocol to characterize thermal protective performance of fabrics against hot liquid splash[J].Experimental Thermal and Fluid Science,2013,46(4):37- 45.
[9] MANDAL S,LU Y,WANG F,et al.Characterization of thermal protective clothing under hot water and pressurized steam exposure[J]. AATCC Journal of Research,2014,1(5):7-16.
[10]SU Y,LI J.Development of a test device to characterize thermal protective performance of fabrics against hot steam and thermal radiation[J].Measurement Science and Technology,2016,27(12): 12-27.
[11]Standard test method for evaluating heat transfer through materials for protective clothing upon contact with a hot liquid splash:ASTM F2701-08[S/OL].[2019-11- 01].https://www.astm.org/Standards/F2701.htm.
[12]LEE C,KIM I Y, WOOD A.Investigation and correlation of manikin and bench-scale fire testing of clothing systems[J].Fire Materials,2002,26(6):269-278.
[13]ZHANG M,SONG G.Instrumented flash fire manikin for maximizing protective clothing performance[J].Firefighters’ Clothing Equipment:Performance,Protection and Comfort,2018(1):287.
[14]WANG M,LI J.Thermal protection retention of fire protec-tive clothing after repeated flash fire exposure[J].Journal of Industrial Textiles,2016,46(3):737-755.
[15]LU Y,SONG G,LI J.Analysing performance of protective clothing upon hot liquid exposure using instrumented spray manikin[J].Annals of Work Exposures and Health,2013,57(6):793-804.
[16]LU Y,SONG G,WANG F.Performance study of protective clothing against hot water splashes:from bench scale test to instrumented manikin test[J].Annals of Work Exposures and Health,2014,59(2): 232-242.
[17]Standard test method for unsteady-state heat transfer evalua-tion of flame resistant materials for clothing with continuous heating:ASTM F2700-08—2013[S/OL].[2019-11-01].https://www.astm.org/Standards/F2700.htm.
[18]Standard test method for radiant heat resistance of flame resistant clothing materials with continuous heating:ASTM F1939—2015[S/OL].[2019-11-01].https://www.astm.org/Standards/F1939.htm.
[19]Standard test method for measuring the transmitted and stored energy of firefighter protective clothing systems:ASTM F2731—2018[S].[2019-11-01].https://www.astm.org/Standards/F2731.htm.
[20]Standard test method for unsteady-state heat transfer evalu-ation of flame resistant materials for clothing with burn injury prediction:ASTM F2703-08—2013[S/OL].[2019-11-01].https://www.astm.org/Standards/F2703.htm.
[21]Standard test method for radiant heat performance of flame resistant clothing materials with burn injury prediction:ASTM F2702—2015[S/OL].[2019-11-01].https://www.astm.org/Standards/F2702.htm.
[22]Protective clothing against heat and flame—determination of heat transmission on exposure to flame:ISO 9151—2016[S/OL].[2019-11-01].https://www.iso.org/standard/55326.html.
[23]Protective clothing—protection against heat and fire—method of test:evaluation of materials and material assemblies when exposed to a source of radiant heat:ISO 6942—2002[S/OL].[2019-11-01].https://www.iso.org/standard/26327.html.
[24]Clothing for protection against heat and flame—determination of heat transmission on exposure to both flame and radiant heat:ISO 17492—2003[S/OL].[2019-11-01].https://www.iso.org/standard/30698.html.
[25]Standard test method for evaluation of flame-resistant clothing for protection against fire simulations using an instrumented manikin:ASTM F1930—2018[S/OL].[2019-11-01].https://www.astm.org/standards/F1930.htm.
[26]Protective clothing against heat and flame—part 1:test method for complete garments—measurement of transferred energy using an instrumented manikin:ISO 13506-1—2017[S/OL].[2019-11-01].https://www.iso.org/standard/63839.html.
[27]BEHNKE W P. Thermal protective performance test for clothing[J].Fire Technology, 1977, 13(1):6-12.
[28]翟丽娜,李俊.服装热防护性能测评技术的发展过程及现状[J].纺织学报,2015,36(7):162-168.
ZHAI Lina,LI Jun.Development and current status on performance test and evaluation of thermal protective clothing[J].Journal of Textile Research,2015,36(7):162-168.(in Chinese)
[29]LEE Y M,BARKER R L.Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures[J].Textile Research Journal,1987,57(3):123-132.
[30]LEE Y M,BARKER R L.Effect of moisture on the thermal protective performance of heat-resistant fabrics[J].Journal of Fire Sciences,1986,4(5):315-331.
[31]SHALEV I,BARKER R L.Analysis of heat transfer charac-teristits of fabrics in an open flame exposure[J].Textile Research Journal,1983,53(8):475- 482.
[32]LI J,LI X,LU Y,et al.A new approach to characterize the effect of fabric deformation on thermal protective performance[J].Measurement Science and Technology,2012,23(4):133-140.
[33]LU Y,LI J,LI X,et al.The effect of air gaps in moist protec-tive clothing on protection from heat and flame[J].Journal of Fire Sciences,2013,31(2):99-111.
[34]MANDAL S,SONG G W,ACKERMAN M,et al.Characterization of textile fabrics under various thermal exposures[J].Textile Research Journal,2013,83(10):1005-1019.
[35]CUI Z Y,MA C J,LV N.Effects of heat treatment on the mechanical and thermal performance of fabric used in firefighter protective clothing[J].Fibres and Textiles in Eastern Europe,2015,23(2):74-78.
[36]ROSSI R M,ZIMMERLI T.Breathability and protection aspects of moisture barriers used in fire fighters protective clothing after thermal aging[M]//STULL J,SCHWOPE A.Performance of protective clothing:6th volume.West Conshohocken:ASTM International,1997:238-247.
[37]STOLL A M.Thermal protection capacity of aviator’s textiles[J]. Aerospace Medicine, 1962(33):846-850.
[38]NORTO M J T,KADOLPH S J,JOHNSON R F,et al.Design,construction,and use of Minnesota woman,a thermally instrumented mannequin[J].Textile Research Journal,1985,55(1): 5-12.
[39]CROWN E M,DALE J D.Evaluation of flash fire protective clothing using an instrumented mannequin[R].Edmon-ton:University of Alberta,1992.
[40]BEHNKE W P,GESHURY A J,Barker R L.Thermo-man and thermo-leg:large scale test methods for evaluating thermal protective performance,in performance of protective clothing[J].ASTM International,1992(1):266-280.
[41]SIPE J E. Development of an instrumented dynamic manne-quin test to rate the protection provided by protective clothing[D].Worcester:Worcester Polytechnic Institute,2004.
[42]ROSSI R M,BRUGGANN G,STAMPFLI R. Comparison of flame spread of textiles and burn injury prediction with a manikin[J]. Fire and Materials,2005,29(6):395- 406.
[43]HUANGFU X D,WANG M,LI J.Analyzing the combustion characters of fire protective clothing exposed to flash fire[J].Advanced Materials Research,2013(7):821-822.
[44]MAH T,SONG G.Investigation of the contribution of garment design to thermal protection.Part 2:instrumented female mannequin flash-fire evaluation system[J].Textile Research Journal,2010,80(14): 1473-1487.
[45]MAH T,SONG G.Investigation of the contribution of garment design to thermal protection.Part 1:characterizing air gaps using three-dimensional body scanning for women’s protective clothing[J].Textile Research Journal,2010,80(13): 1317-1329.
[46]SONG G.Clothing air gap layers and thermal protective performance in single layer garment[J]. Journal of Industrial Textiles,2007,36(3):193-205.
[47]HE J,WANG M,LI J.Determination of the thermal protec-tive performance of clothing during bench-scale fire test and flame engulfment test:evidence from a new index[J].Journal of Fire Sciences,2015,33(3):218-231.
[48]KUNADHARAJU K,SMITH T D,DeJoy D M.Line-of-duty deaths among US firefighters:an analysis of fatality investigations[J].Accident Analysis and Prevention,2011,43(3):1171-1180.
[49]LJUBICIC A,VARNAI V M,PETRINEC B,et al.Response to thermal and physical strain during flashover training in Croatian firefighters[J].Applied Ergonomics,2014,45(3):544-549.
[50]Brode P,Kuklane K,Candas V,et al.Heat gain from thermal radiation through protective clothing with different insulation,reflectivity and vapour permeabilityeat[J].International Journal of Occupational Safety Ergonomics,2010,16(2):231-244.
[51]GUAN M H,ANNAHEIM S,CAMENZIND M,et al.Moisture transfer of the clothing—human body system during continuous sweating under radiant heat[J].Textile Research Journal,2019,89(21):4537- 4553.
[52]GUAN M H,PSIKUTA A,CAMENZIND M,et al.Effect of perspired moisture and material properties on evaporative cooling and thermal protection of the clothed human body exposed to radiant heat[J].Textile Research Journal,2018,89(18):3663-3676.
[53]KIM J H,POWELL J B,ROBERGE R J,et al.Evaluation of protective ensemble thermal characteristics through sweating hot plate,sweating thermal manikin,and human tests[J].Journal of Occupational and Environmental Hygiene,2014,11(4):259-267.
[54]CARTER J M,RAYSON M P,WILKINSON D M,et al.Strategies to combat heat strain during and after firefighting[J].Journal of Thermal Biology,2007,32(2):109-116.
[55]GLITZ K J,SEIBEL U,ROHDE U,et al.Reducing heat stress under thermal insulation in protective clothing:micro-climate cooling by a "physiological" method[J].Ergonomics,2015,58(8):1461-1469.
[56]HOUSHYAR S,PADHYE R,TROYNIKOV O,et al.Evalu-ation and improvement of thermo-physiological comfort properties of firefighters’ protective clothing containing super absorbent materials[J].The Journal of the Textile Institute,2015(12):1394-1402.
[57]SHAID A,FERGUSSON M,WANG L.Thermophysiological comfort analysis of aerogel nanoparticle incorporated fabric for fire fighter’s protective clothing[J].Chemical and Materials Engineering,2014,2(2):37-43.
[58]TOKIZAWA K,SAWADA S,OKA T,et al.Fan-precooling effect on heat strain while wearing protective clothing[J]. International Journal of Biometeorology,2014,58(9):1919-1925.
[59]YOO S,BARKER R L.Moisture management properties of heat-resistant workwear fabrics—effects of hydrophilic finishes and hygroscopic fiber blends[J].Textile Research Journal,2004,74(11): 995-1000.
[60]SUN G,YOO H S,ZHANG X S,et al.Radiant protective and transport properties of fabrics used by wildland firefighters[J].Textile Research Journal,2000,70(7):567-573.
[61]WANG Y,ZONG Y,LI J,et al.Evaluating the moisture transfer property of the multi-layered fabric system in firefighter turnout clothing[J].Fibres and Textiles in Eastern Europe,2011,19(6):101-105.
[62]RACHID E A,DOLEZ P,VU-KHANH T.Effect of thermal aging on the mechanical and barrier properties of an e-PTFE/Nomex moisture membrane used in firefighters’ protective suits[J]. Journal of Applied Polymer Science,2011(5):3101-3110.
[63]ELAIDANI R,PHUONG N T,MALAJATI Y,et al.Photochemical aging of an e-PTFE/Nomex membrane used in firefighter protective clothing[J].Polymer Degradation and Stability,2013(7):1300-1310.
[64]HE J Z,LI J,KIM E.Assessment of the heat and moisture transfer in a multilayer protective fabric system under various ambient conditions[J].Textile Research Journal,2015,85(3):227-237.
[65]GAO C,HOLMER I,FAN J,et al.The comparison of thermal properties of protective clothing using dry and sweating manikins[C]//Proceedings of the 3rd European conference on protective clothing(ECPC)and NOKOBETEF.Gdynia:Protective Clothing(ECPC)and NOKOBETEF,2006:10-12.
[66]WANG Y,ZHANG Z,LI J,et al.Effects of inner and outer clothing combinations on firefighter ensembles’ thermal-and moisture-related comfort levels[J].Journal of the Textile Institute,2013(5):530-540.
[67]张向辉,王云仪,李俊,等.防护服装结构设计对着装舒适性的影响[J].纺织学报,2009,30(6):138-144.
ZHANG Xianghui,WANG Yunyi,LI Jun,et al.Effects of structure design on comfort of protective clothing[J].Journal of Textile Research,2009,30(6):138-144.(in Chinese)
[68]PSIKUTA A,KUKLANE K,BOGDAN A,et al.Opportunities and constraints of presently used thermal manikins for thermo-physiological simulation of the human body[J].International Journal of Biometeorology,2016,60(3):435- 446.
[69] FAN J T,CHEN Y S. Measurement of clothing thermal insulation and moisture vapour resistance using a novel perspiring fabric thermal manikin[J].Measurement Science and Technology,2002,13(7):1115.
[70]COCA A,ROBERGE R,SHEPHERD A,et al.Ergonomic comparison of a chem/bio prototype firefighter ensemble and a standard ensemble[J].European Journal of Applied Physiology,2008(2): 351-359.
[71]HUCK J.Protective clothing systems: a technique for evaluating restriction of wearer mobility[J].Applied Ergonomics,1988,19(3):185-190.
[72]HUCK J.Restriction to movement in fire-fighter protective clothing:evaluation of alternative sleeves and liners[J].Applied Ergonomics,1991,22(2)91-100.
[73]COCA A,WILLIAMS W J,ROBERGE R J,et al.Effects of fire fighter protective ensembles on mobility and perfor-mance[J].Applied Ergonomics,2010,41(4):636-641.
[74]ADAMS P S.SLOCUM A C,KEYSERLING W M.A model for protective clothing effects on performances[J].International Journal of Clothing Science Technology,1994,6(4):6-16.
[75]TAYLOR N A S,LEWIS M C,NOTLEY S R,et al.A fractionation of the physiological burden of the personal protective equipment worn by firefighters[J].European Journal of Applied Physiology,2012(8):2913-2921.
[76]ADAMS P S,KEYSERLING W M.Three methods for measuring range of motion while wearing protective clothing:a comparative study[J].International Journal of Industrial Ergonomics,1993,12(3): 177-191.
[77]PARK H,KIM S,MORRIS K,et al.Effect of firefighters’ personal protective equipment on gait[J].Applied Ergonomics,2015,48(5):42-48.
[78]PARK H,TREJO H,MILES M,et al.Impact of firefighter gear on lower body range of motion[J].International Journal of Clothing Science and Technology,2015,27(2):315-334.
[79]阎迪,郝爱萍.功能性防护服及新材料应用[J].棉纺织技术,2012,40(2):65-68.
YAN Di,HAO Aiping.Functional protective clothing and new material application[J].Cotton Textile Technology,2012,40(2):65-68.(in Chinese)
(责任编辑:卢 杰,沈天琦)

相似文献/References:

[1]邱 浩,王云仪*.消防服多重功能的研究进展综述[J].服装学报,2017,2(01):11.
 QIU Hao,WANG Yunyi*.Review on the Multi-Functions of Firefighting Clothing[J].Journal of Clothing Research,2017,2(01):11.
[2]王鸿博,马晶婧,董维锋,等.消防服用面料阻燃性及热防护性综合评价[J].服装学报,2019,4(02):102.
 WANG Hongbo,MA Jingjing,DONG Weifeng,et al.Comprehensive Evaluation of Flame Retardancy and Thermal Protection of Fire-Fighting Fabrics[J].Journal of Clothing Research,2019,4(01):102.
[3]刘 沙,陈维旺*.气凝胶隔热面料热防护性能测评[J].服装学报,2021,6(04):291.
 LIU Sha,CHEN Weiwang*.Evaluation on Thermal Protective Performance of Aerogel Fabrics[J].Journal of Clothing Research,2021,6(01):291.

更新日期/Last Update: 2020-02-29