[1]刘 沙,陈维旺*.气凝胶隔热面料热防护性能测评[J].服装学报,2021,6(04):291-297.
 LIU Sha,CHEN Weiwang*.Evaluation on Thermal Protective Performance of Aerogel Fabrics[J].Journal of Clothing Research,2021,6(04):291-297.
点击复制

气凝胶隔热面料热防护性能测评()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第6卷
期数:
2021年04期
页码:
291-297
栏目:
服装材料与技术
出版日期:
2021-08-30

文章信息/Info

Title:
Evaluation on Thermal Protective Performance of Aerogel Fabrics
作者:
刘 沙;  陈维旺*
中国民航大学 民航热灾害防控与应急重点实验室,天津 300300
Author(s):
LIU Sha;  CHEN Weiwang*
Key Laboratory of Civil Aviation Thermal Hazards Prevention and Emergency Response, Civil Aviation University of China, Tianjin 300300, China
分类号:
TS 941.15
文献标志码:
A
摘要:
在隔热织物中填充气凝胶是提高织物热防护性能的有效途径。为探讨气凝胶隔热面料的热防护性能及其作为消防服隔热层使用的可行性,选取3种不同规格的气凝胶面料替换现役消防服的隔热层,通过热平板法分析评价不同组合面料的综合热防护性能,并耦合皮肤烧伤模型计算人体皮肤达到二度烧伤所需的时间。结果表明:相比传统消防服中的无纺毡隔热层,气凝胶面料具有更好的热防护性能; AG-T-Nomex系列面料受黏合剂耐热性的限制,在高温环境下容易发生变形,故不适合在消防服中使用。综合分析,AG-ST-POF的高温热防护性能更好,效果相对更稳定,有作为消防服隔热层面料使用的潜能。
Abstract:
:Filling aerogel to the thermal insulation fabric is an effective way to improve the thermal protective performance of the fabric.To explore the thermal protective performance of aerogel thermal insulation fabrics and their feasibility as the thermal insulation layer of fire-fighting protective clothing, three different specifications of aerogel fabrics were chosen for analysis in this study.The comprehensive thermal protective performance of different composite fabrics was evaluated using hot plate method.The time for human skin to reach the second-degree burn was also calculated by coupling with skin burn model.The test and calculation results show that,aerogel fabrics can provide better thermal protection compared with the traditional non-woven felt. However, due to the heat resistance of the adhesive, the AG-T-Nomex is easy to deform in high temperature environment,thus it is not suitable for application in fire-fighting protective clothing. Based on the comprehensive analysis, AG-ST-POF performs better in thermal protection,and shows the potential to be used as a heat-insulating layer fabric for fire-fighting protective clothing.

参考文献/References:

[1] 钟晓. 4月至10月在全国开展消防安全执法检查专项行动[J]. 中国消防, 2019(4): 8.
ZHONG Xiao.The special action of fire safety law enforcement inspection was carried out nationwide from April to October[J]. China Fire, 2019(4): 8.(in Chinese)
[2] 范维澄, 孙金华, 陆守香. 火灾风险评估方法学[M]. 北京: 科学出版社, 2004: 258-265.
[3] 陈平军. 高层建筑火灾特点及防范对策[J]. 煤炭技术, 2008, 27(8): 162-163.
CHEN Pingjun. Characteristics of high-rise building fires and countermeasures[J]. Coal Technology, 2008, 27(8): 162-163.(in Chinese)
[4] 黄式培. 小议商场火灾原因及调查方法[J]. 科技资讯, 2013, 11(18): 207,209.
HUANG Shipei.Discussion on fire causes and investigation methods in shopping malls[J]. Science and Techno-logy Information, 2013, 11(18): 207,209.(in Chinese)
[5] 漆政昆, 张和平, 黄冬梅, 等. 消防服用织物材料热湿舒适性综合评价[J]. 中国安全科学学报, 2012, 22(4): 132-138.
QI Zhengkun, ZHANG Heping, HUANG Dongmei, et al. Comprehensive evaluation of thermal and moisture comfortableness of fabric for firefighter protective clothing[J]. China Safety Science Journal, 2012, 22(4): 132-138.(in Chinese)
[6] 朱方龙. 消防服用织物热防护性能数值模拟[J]. 消防科学与技术, 2011, 30(11): 1044-1047.
ZHU Fanglong. Numerical simulation on thermal protection performance of textile used for fire fighting suit[J]. Fire Science and Technology, 2011, 30(11): 1044-1047.(in Chinese)
[7] 王鸿博, 马晶婧, 董维锋, 等. 消防服用面料阻燃性及热防护性综合评价[J]. 服装学报, 2019, 4(2): 102-105,116.
WANG Hongbo, MA Jingjing, DONG Weifeng, et al. Comprehensive evaluation of flame retardancy and thermal protection of fire-fighting fabrics[J]. Journal of Clothing Research, 2019, 4(2): 102-105,116.(in Chinese)
[8] 陈颖, 邵高峰, 吴晓栋, 等. 聚合物气凝胶研究进展[J]. 材料导报, 2016, 30(13): 55-62,70.
CHEN Ying, SHAO Gaofeng, WU Xiaodong, et al. Advances in polymer aerogels[J]. Materials Review, 2016, 30(13): 55-62,70.(in Chinese)
[9] 冯晶晶, 赵晓明, 郑振荣. SiO2气凝胶在热防护纺织品中的应用[J]. 纺织科学与工程学报, 2018, 35(2): 113-117.
FENG Jingjing, ZHAO Xiaoming, ZHENG Zhenrong. Application of SiO2 aerogel in thermal protective textiles[J]. Journal of Textile Science and Engineering, 2018, 35(2): 113-117.(in Chinese)
[10] 王小丹. 复合结构隔热材料的制备与性能研究[D]. 上海: 上海工程技术大学, 2011.
[11] 贺香梅, 徐壁, 蔡再生. SiO2气凝胶隔热涂层织物的制备及性能研究[J]. 表面技术, 2014, 43(3): 95-100.
HE Xiangmei, XU Bi, CAI Zaisheng. Preparation of silica aerogel coated fabric and studies of its performance[J]. Surface Technology, 2014, 43(3): 95-100.(in Chinese)
[12] 任乾乾, 林兰天, 郑慧琴. 采用二氧化硅气凝胶的防火隔热组合面料研究[J]. 上海纺织科技, 2011, 39(12): 53-55.
REN Qianqian, LIN Lantian, ZHENG Huiqin. Research of fireproof and insulation composite fabric by use of silica aerogels[J]. Shanghai Textile Science and Technology, 2011, 39(12): 53-55.(in Chinese)
[13] 张兴娟, 吴洪飞, 孔祥明. 新型组合式消防服热防护性能分析[J]. 中国个体防护装备, 2013(6): 20-24.
ZHANG Xingjuan, WU Hongfei, KONG Xiangming. Analysis of thermal protective performance of aerogel-based new combined firefighters’ clothing[J]. China Personal Protective Equipment, 2013(6): 20-24.(in Chinese)
[14] JABBARI M, ?KESSON D, SKRIFVARS M, et al. Novel lightweight and highly thermally insulative silica aerogel-doped poly(vinyl chloride)-coated fabric composite[J]. Journal of Reinforced Plastics and Composites, 2015, 34(19): 1581-1592.
[15] 张慧. 基于气凝胶的高性能热防护纺织新材料的研究[D]. 天津: 天津工业大学, 2017.
[16] QI Z K, HUANG D M, HE S, et al. Thermal protective performance of aerogel embedded firefighter’s protective clothing[J]. Journal of Engineered Fibers and Fabrics, 2013, 8(2): 134-139.
[17] SHAID A, WANG L J, PADHYE R, et al. Aerogel nonwoven as reinforcement and batting material for firefighter’s protective clothing: a comparative study[J]. Journal of Sol-Gel Science and Technology, 2018, 87(1): 95-104.
[18] CHAKRABORTY S, RAO A V, KOTHARI V K, et al. Radiant heat protective performance of clothing assemblies with flexible aerogel-nomex nonwoven composite as thermal insulation[J]. Indian Journal of Fibre and Textile Research,2019,44(4): 396-403.
[19] KRZEMINSKA S, GRESZTA A, R?ZANSKI A, et al. Effects of heat exposure on the properties and structure of aerogels for protective clothing applications[J]. Microporous and Mesoporous Materials, 2019, 285: 43-55.
[20] HEBALKAR N, KOLLIPARA K S, ANANTHAN Y, et al. Nanoporous aerogels for defense and aerospace applications[M]//MAHAJAN Y R,JOHNSON R.Handbook of Advanced Ceramics and Compo-sites: Defense, Security, Aerospace and Energy Applications.Berlin:Springer,2020: 121-163.
[21] 孟晶, 高珊, 卢业虎. 石墨烯气凝胶复合防火面料防护性能的影响因素[J]. 纺织学报, 2020, 41(11): 116-121.
MENG Jing, GAO Shan, LU Yehu. Investigation on factors influencing thermal protection of composite flame retardant fabrics treated by graphene aerogel[J]. Journal of Textile Research, 2020, 41(11): 116-121.(in Chinese)
[22] 赵石楠. 气凝胶型隔热层消防服概念及应用的可行性研究[J]. 消防技术与产品信息, 2018, 31(1): 67- 69.
ZHAO Shinan. Conception and application feasibility of aerogel thermal insulating fire protective clothing[J]. Fire Technique and Products Information, 2018, 31(1): 67- 69.(in Chinese)
HE H L, YU Z C, SONG G W. The effect of moisture and air gap on the thermal protective performance of fabric assemblies used by wildland firefighters[J]. The Journal of the Textile Institute, 2015: 1-7.
[24] 黄冬梅, 何松. 空气层位置对消防战斗服隔热性能的影响[J]. 纺织学报, 2015, 36(10): 113-119.
HUANG Dongmei, HE Song. Influence of air gap position on heat insulation performance of firefighters’ protective clothing[J]. Journal of Textile Research, 2015, 36(10): 113-119.(in Chinese)
[25] DILLER K R, HAYES L J. Analysis of tissue injury by burning: comparison of in situ and skin flap models[J]. International Journal of Heat and Mass Transfer, 1991, 34(6): 1393-1406.
[26] SONG G, BARKER R, THOMPSON D. Comparison of methods used to predict the burn injuries in tests of thermal protective fabrics[J]. Journal of ASTM International, 2005, 2(2): 1-10.
[27] 苏云, 杨杰, 李睿, 等. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(2): 147-152.
SU Yun, YANG Jie, LI Rui, et al. Predictions of physiological reaction and skin burn of firefighter exposing to thermal radiation[J]. Journal of Textile Research, 2019, 40(2): 147-152.(in Chinese)
[28] 付明.高温热辐射环境中人员热防护机理与热安全评估研究[D]. 北京: 清华大学, 2015.
[29] PENNES H H. Analysis of tissue and arterial blood temperatures in the resting forearm[J]. Journal of Applied Physiology,1948, 1(2), 93-122.
[30] TORVI D A, DALE J D. A finite element model of skin subjected to a flash fire[J]. Journal of Biomechanical Engineering, 1994, 116(3): 250-255.
[31] HENRIQUES F C, MORITZ A R. Studies of thermal injury: I. the conduction of heat to and through skin and the temperatures attained therein. a theoretical and an experimental investigation[J]. The American Journal of Pathology, 1947, 23(4): 530-549.
[32] WEAVER J A, STOLL A M. Mathematical model of skin exposed to thermal radiation[J]. Aerospace Medicine, 1969, 40(1): 24-30.(责任编辑:邢宝妹)

更新日期/Last Update: 2021-08-30