[1]洪剑寒,岳欣琰,王华兵,等.一维结构柔性应变传感器在智能纺织服用品中的应用进展[J].服装学报,2024,9(05):456-463.
 .School of Textile and Apparel,Shaoxing University,Shaoxing 000,et al.HONG Jianhan1,2, YUE Xinyan1,2, WANG Huabing3, WANG Xiaohu1,2,4, HAN Xaio1,2[J].Journal of Clothing Research,2024,9(05):456-463.
点击复制

一维结构柔性应变传感器在智能纺织服用品中的应用进展()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年05期
页码:
456-463
栏目:
柔性传感器专题
出版日期:
2024-11-01

文章信息/Info

Title:
HONG Jianhan1,2, YUE Xinyan1,2, WANG Huabing3, WANG Xiaohu1,2,4, HAN Xaio1,2
作者:
洪剑寒1; 2;  岳欣琰1; 2;  王华兵3;  王小虎1; 2; 4;  韩 潇1; 2
1.绍兴文理学院 纺织科学与工程学院,浙江 绍兴 312000; 2. 浙江省清洁染整技术研究重点实验室,浙江 绍兴 312000; 3. 江南大学 纺织科学与工程学院,江苏无锡 214122; 4.浙江洁达新材料科技有限公司,浙江 绍兴 312000
Author(s):
1.School of Textile and Apparel;  Shaoxing University;  Shaoxing 312000;  China; 2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province;  Shaoxing 312000;  China 3.College of Textile Science and Engineering;  Jiangnan University;  Wuxi 214122;  China; 4. Zhejiang Jieda New Material Technology Co.; Ltd;  Shaoxing 312000;  China
Apparel and Art Design College,Xi’an Polytechnic University,Xi’an 710048,China
分类号:
TP 212; TS 941.373
文献标志码:
A
摘要:
一维结构柔性应变传感器具有优异的可集成性、适形性和灵活的结构变化等特点,在智能纺织服用品的开发与应用方面具有很大潜力。通过对纤维和纱线制备一维结构柔性应变传感器的工艺及其优缺点的介绍,综述近年来纤维型和纱线型一维结构柔性应变传感器在智能纺织服用品设计与应用中的研究进展,分析其在智能可穿戴应用领域中存在的问题。研究表明,一维结构柔性应变传感器在智能纺织服用品中的应用前景广阔,未来研究人员可不断优化和提升传感器的性能和制备工艺,推动一维结构柔性应变传感器在智能纺织服用品的实际应用。
Abstract:
The one-dimensional structural flexible strain sensor has excellent integrability, conformability, and flexibility in structural changes, which has great potential in the development and application of smart textile products. This review introduces the fabrication process and advantages and disadvantages of one-dimensional structural flexible strain sensors made of fibers and yarns, and summarizes the research progress of fiber-type and yarn-type one-dimensional structural flexible strain sensors in the design and application of smart textile products in recent years. It analyzes the problems existing in the application of one-dimensional structural flexible strain sensors in smart wearable applications. The research shows that the application prospect of one-dimensional structural flexible strain sensor in smart textile products is broad. In the future, researchers can continuously optimize and improve the performance and fabrication process of the sensor to promote the actual application of one-dimensional structural flexible strain sensor in smart textile products.

参考文献/References:

[1] HE X C, WANG W Y, YANG S J, et al. Adhesive tapes: from daily necessities to flexible smart electronics[J]. Applied Physics Reviews, 2023, 10(1): 011305.
[2] ALIYANA A K, STYLIOS G. A review on the progress in core-spun yarns(CSYs)based textile TENGs for real-time energy generation, capture and sensing [J]. Advanced Science, 2023, 10(29): 2304232.
[3] LIU Q, ZHANG Y Q, SUN X W, et al. All textile-based robust pressure sensors for smart garments[J]. Chemical Engineering Journal, 2023, 454: 140302.
[4] WANG Q L, HUANG X W, HAN F L, et al. Superhydrophobic, biocompatible and durable nanofiber composite with an asymmetric structure for anisotropic strain sensing and body motion detection[J]. Chemical Engineering Journal, 2022, 450: 137899.
[5] 李玲,刘庆生,李大伟,等.三维非织造材料基压阻式传感器的制备与性能[J].服装学报,2023,8(6):502-507.
LI Ling,LIU Qingsheng,LI Dawei,et al.Preparation and performance of piezoresistive sensors based on three-dimensional nonwovens[J].Journal of Clothing Research,2023,8(6):502-507.(in Chinese)
[6] LEE Y, KIM H, KIM Y, et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release[J]. Nanoscale, 2021, 13(43): 18112-18124.
[7] SHENG F F, ZHANG B, ZHANG Y H, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967.
[8] 宋炜宁,张佩华.基于三维模拟的智能文胸压力舒适性优化设计[J].服装学报,2023,8(4):315-322.
SONG Weining,ZHANG Peihua.Pressure comfort optimization design of intelligent bra based on 3D simulation[J].Journal of Clothing Research,2023,8(4):315-322.(in Chinese)
[9] CHO C J, CHUNG P Y, TSAI Y W, et al. Stretchable sensors: novel human motion monitoring wearables[J]. Nanomaterials, 2023, 13(16): 2375.
[10] YU M, JIN J Q, WANG X, et al. Development and design of flexible sensors used in pressure-monitoring sports pants for human knee joints[J]. IEEE Sensors Journal, 2021, 21(22): 25400-25408.
[11] YU Y N, LUO C, CHIBA H, et al. Energy harvesting,and wireless communication by carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposites[J]. Nano Energy, 2023,113: 108588.
[12] ZHU Y F, ZHAO B B, LEI L L, et al. Facile construction of a flexible smart core-sheath flax yarns with temperature-responsive resistance for ultra-fast fire-alarm response[J]. Chemical Engineering Journal, 2023, 471: 144718.
[13] ZHAI S L, KARAHAN H E, WANG C J, et al. 1D supercapacitors for emerging electronics: current status and future directions[J]. Advanced Materials, 2020, 32(5): e1902387.
[14] YIN Z, LU H J, GAN L L, et al. Electronic fibers/textiles for health-monitoring: fabrication and application[J]. Advanced Materials Technologies, 2023, 8(3): 2200654.
[15] LIANG Q Q, ZHANG D, WU Y C, et al. Stretchable helical fibers with skin-core structure for pressure and proximity sensing[J]. Nano Energy, 2023,113: 108598.
[16] HU S M, HAN J, SHI Z J, et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator[J]. Nano-Micro Letters, 2022, 14(1): 115.
[17] WANG F, CHEN J W, CUI X H, et al. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain[J]. ACS Applied Materials and Interfaces, 2022, 14(26): 30268-30278.
[18] ZHONG J P, CHEN R R, SHAN T T, et al. Continuous fabrication of core-sheath fiber for strain sensing and self-powered application[J]. Nano Energy, 2023, 118: 108950.
[19] 赵蕾.电容型柔性复合传感纤维的制备及电气性能研究[D].西安: 西安理工大学,2022:41- 45.
[20] HE Y, WAN C W, YANG X, et al. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating [J]. Advanced Materials Technologies, 2023: 2202079.
[21] ZHANG Y J, LI X Y, KIM J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing[J]. Advanced Optical Materials, 2021, 9(6): 2001815.
[22] YU L T, FENG Y, SOM T S D, et al. Dual-core capacitive microfiber sensor for smart textile applications [J]. ACS Applied Materials and Interfaces, 2019, 11(36): 33347-33355.
[23] LEE S M, BHUYAN P, BAE K J, et al. Interdigitating elastic fibers with a liquid metal core toward ultrastretchable and soft capacitive sensors: from 1D fibers to 2D electronics[J]. ACS Applied Electronic Materials, 2022, 4(12): 6275- 6283.
[24] TENG Y C, WEI J, DU H B, et al. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring[J]. Journal of Materials Chemistry A, 2020, 8(23): 11695-11711.
[25] 张波, 胡希丽, 曲丽君. 微流控纺丝技术及多元结构微流控纤维柔性可穿戴应用[J]. 复合材料学报, 2023, 40(5): 2536-2549.
ZHANG Bo, HU Xili, QU Lijun. Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2536-2549.(in Chinese)
[26] YU Y R, GUO J H, MA B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics[J]. Science Bulletin, 2020, 65(20): 1752-1759.
[27] WU Y T, YAN T, ZHANG K Q, et al. A hollow core-sheath composite fiber based on polyaniline/polyurethane: preparation, properties, and multi-model strain sensing performance[J]. Advanced Materials Technologies, 2023, 8(1): 2200777.
[28] GUO J H, YU Y R, ZHANG D G, et al. Morphological hydrogel microfibers with MXene encapsulation for electronic skin[J]. Research, 2021: 7065907.
[29] ZHANG S C, XU J T. PDMS/Ag/mxene/polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring[J]. Polymers, 2022, 14(24): 5401.
[30] UNO M O, MORITA S, OMORI M, et al. Pressure sensor yarns with a sheath-core structure using multi-fiber polymer[J]. Sensors and Actuators A: Physical, 2022, 337: 113440.
[31] ZOU S Z, WANG Y, LI D Q, et al. Facile and scalable fabrication of stretchable flame-resistant yarn for temperature monitoring and strain sensing[J]. Chemical Engineering Journal, 2022, 450: 138465.
[32] ZHENG X H, WANG P, DING B B, et al. Coaxial-helix MXene/PANI-based core-spun yarn towards strain-insensitive conductor and supercapacitor[J]. Materials Today Communications, 2023, 36: 106788.
[33] WU R H, SEO S, MA L Y, et al. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network[J]. Nano-Micro Letters, 2022, 14(1): 139.
[34] TENG Y C, WEI J, DU H B, et al. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring[J]. Journal of Materials Chemistry A, 2020, 8(23): 11695-11711.
[35] HAN X, FAN M J, YUE X Y, et al. Linear flexible capacitive sensor with double helix structure based on multi-needle water-bath electrospinning technology[J]. Smart Material Structures, 2023, 32(3): 035012.
[36] 范梦晶, 吴玲娅, 周歆如, 等. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
FAN Mengjing, WU Lingya, ZHOU Xinru, et al. Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn[J]. Journal of Textile Research, 2023, 44(11): 67-73.(in Chinese)
[37] QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103.
[38] TANG J, WU Y T, MA S D, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022, 232: 109605.
[39] TANG J, WU Y T, MA S D, et al. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials[J]. iScience, 2022, 25(10): 105162.
[40] SU C L, YU Q H, YANG X, et al. One-step braided tubular supercapacitor for integration with a fibrous strain sensor as a wearable fibrous self-powered integrated system[J]. ACS Applied Energy Materials, 2023, 6(20): 10564-10577.
[41] NING C, CHENG R W, JIANG Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821.
[42] 冯雨果,刘宇,周晋. 可穿戴惯性传感器在全膝关节置换术后步态分析中的应用进展 [J]. 皮革科学与工程, 2023, 33(6): 52-58.
FENG Yuguo, LIU Yu, ZHOU Jin.A review of gait analysis after total knee arthroplasty using wearable inertial measurement sensors [J].Leather Science and Engineering, 2023, 33(6): 52-58.
[43] SHUAI L, GUO Z H, ZHANG P P, et al. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles[J]. Nano Energy, 2020, 78: 105389.
[44] ZHANG C, OUYANG W Y, ZHANG L, et al. A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications[J]. Microsystems and Nanoengineering, 2023, 9: 158.
[45] TRUONG T, KIM J. A wearable strain sensor utilizing shape memory polymer/carbon nanotube composites measuring respiration movements[J]. Polymers, 2024, 16(3): 373.
[46] JAMATIA T, MATYAS J, OLEJNIK R, et al. Wearable and stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618.
[47] NIU L, WANG J, WANG K, et al. High-speed sirospun conductive yarn for stretchable embedded knitted circuit and self-powered wearable device[J]. Advanced Fiber Materials, 2023, 5(1): 154-167.
(责任编辑:张 雪)

更新日期/Last Update: 2024-10-30