参考文献/References:
[1] HE X C, WANG W Y, YANG S J, et al. Adhesive tapes: from daily necessities to flexible smart electronics[J]. Applied Physics Reviews, 2023, 10(1): 011305.
[2] ALIYANA A K, STYLIOS G. A review on the progress in core-spun yarns(CSYs)based textile TENGs for real-time energy generation, capture and sensing [J]. Advanced Science, 2023, 10(29): 2304232.
[3] LIU Q, ZHANG Y Q, SUN X W, et al. All textile-based robust pressure sensors for smart garments[J]. Chemical Engineering Journal, 2023, 454: 140302.
[4] WANG Q L, HUANG X W, HAN F L, et al. Superhydrophobic, biocompatible and durable nanofiber composite with an asymmetric structure for anisotropic strain sensing and body motion detection[J]. Chemical Engineering Journal, 2022, 450: 137899.
[5] 李玲,刘庆生,李大伟,等.三维非织造材料基压阻式传感器的制备与性能[J].服装学报,2023,8(6):502-507.
LI Ling,LIU Qingsheng,LI Dawei,et al.Preparation and performance of piezoresistive sensors based on three-dimensional nonwovens[J].Journal of Clothing Research,2023,8(6):502-507.(in Chinese)
[6] LEE Y, KIM H, KIM Y, et al. A multifunctional electronic suture for continuous strain monitoring and on-demand drug release[J]. Nanoscale, 2021, 13(43): 18112-18124.
[7] SHENG F F, ZHANG B, ZHANG Y H, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967.
[8] 宋炜宁,张佩华.基于三维模拟的智能文胸压力舒适性优化设计[J].服装学报,2023,8(4):315-322.
SONG Weining,ZHANG Peihua.Pressure comfort optimization design of intelligent bra based on 3D simulation[J].Journal of Clothing Research,2023,8(4):315-322.(in Chinese)
[9] CHO C J, CHUNG P Y, TSAI Y W, et al. Stretchable sensors: novel human motion monitoring wearables[J]. Nanomaterials, 2023, 13(16): 2375.
[10] YU M, JIN J Q, WANG X, et al. Development and design of flexible sensors used in pressure-monitoring sports pants for human knee joints[J]. IEEE Sensors Journal, 2021, 21(22): 25400-25408.
[11] YU Y N, LUO C, CHIBA H, et al. Energy harvesting,and wireless communication by carbon fiber-reinforced polymer-enhanced piezoelectric nanocomposites[J]. Nano Energy, 2023,113: 108588.
[12] ZHU Y F, ZHAO B B, LEI L L, et al. Facile construction of a flexible smart core-sheath flax yarns with temperature-responsive resistance for ultra-fast fire-alarm response[J]. Chemical Engineering Journal, 2023, 471: 144718.
[13] ZHAI S L, KARAHAN H E, WANG C J, et al. 1D supercapacitors for emerging electronics: current status and future directions[J]. Advanced Materials, 2020, 32(5): e1902387.
[14] YIN Z, LU H J, GAN L L, et al. Electronic fibers/textiles for health-monitoring: fabrication and application[J]. Advanced Materials Technologies, 2023, 8(3): 2200654.
[15] LIANG Q Q, ZHANG D, WU Y C, et al. Stretchable helical fibers with skin-core structure for pressure and proximity sensing[J]. Nano Energy, 2023,113: 108598.
[16] HU S M, HAN J, SHI Z J, et al. Biodegradable, super-strong, and conductive cellulose macrofibers for fabric-based triboelectric nanogenerator[J]. Nano-Micro Letters, 2022, 14(1): 115.
[17] WANG F, CHEN J W, CUI X H, et al. Wearable ionogel-based fibers for strain sensors with ultrawide linear response and temperature sensors insensitive to strain[J]. ACS Applied Materials and Interfaces, 2022, 14(26): 30268-30278.
[18] ZHONG J P, CHEN R R, SHAN T T, et al. Continuous fabrication of core-sheath fiber for strain sensing and self-powered application[J]. Nano Energy, 2023, 118: 108950.
[19] 赵蕾.电容型柔性复合传感纤维的制备及电气性能研究[D].西安: 西安理工大学,2022:41- 45.
[20] HE Y, WAN C W, YANG X, et al. Thermally drawn super-elastic multifunctional fiber sensor for human movement monitoring and joule heating [J]. Advanced Materials Technologies, 2023: 2202079.
[21] ZHANG Y J, LI X Y, KIM J, et al. Thermally drawn stretchable electrical and optical fiber sensors for multimodal extreme deformation sensing[J]. Advanced Optical Materials, 2021, 9(6): 2001815.
[22] YU L T, FENG Y, SOM T S D, et al. Dual-core capacitive microfiber sensor for smart textile applications [J]. ACS Applied Materials and Interfaces, 2019, 11(36): 33347-33355.
[23] LEE S M, BHUYAN P, BAE K J, et al. Interdigitating elastic fibers with a liquid metal core toward ultrastretchable and soft capacitive sensors: from 1D fibers to 2D electronics[J]. ACS Applied Electronic Materials, 2022, 4(12): 6275- 6283.
[24] TENG Y C, WEI J, DU H B, et al. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring[J]. Journal of Materials Chemistry A, 2020, 8(23): 11695-11711.
[25] 张波, 胡希丽, 曲丽君. 微流控纺丝技术及多元结构微流控纤维柔性可穿戴应用[J]. 复合材料学报, 2023, 40(5): 2536-2549.
ZHANG Bo, HU Xili, QU Lijun. Microfluidic spinning technology and flexible wearable application of multi-structure microfluidic fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(5): 2536-2549.(in Chinese)
[26] YU Y R, GUO J H, MA B, et al. Liquid metal-integrated ultra-elastic conductive microfibers from microfluidics for wearable electronics[J]. Science Bulletin, 2020, 65(20): 1752-1759.
[27] WU Y T, YAN T, ZHANG K Q, et al. A hollow core-sheath composite fiber based on polyaniline/polyurethane: preparation, properties, and multi-model strain sensing performance[J]. Advanced Materials Technologies, 2023, 8(1): 2200777.
[28] GUO J H, YU Y R, ZHANG D G, et al. Morphological hydrogel microfibers with MXene encapsulation for electronic skin[J]. Research, 2021: 7065907.
[29] ZHANG S C, XU J T. PDMS/Ag/mxene/polyurethane conductive yarn as a highly reliable and stretchable strain sensor for human motion monitoring[J]. Polymers, 2022, 14(24): 5401.
[30] UNO M O, MORITA S, OMORI M, et al. Pressure sensor yarns with a sheath-core structure using multi-fiber polymer[J]. Sensors and Actuators A: Physical, 2022, 337: 113440.
[31] ZOU S Z, WANG Y, LI D Q, et al. Facile and scalable fabrication of stretchable flame-resistant yarn for temperature monitoring and strain sensing[J]. Chemical Engineering Journal, 2022, 450: 138465.
[32] ZHENG X H, WANG P, DING B B, et al. Coaxial-helix MXene/PANI-based core-spun yarn towards strain-insensitive conductor and supercapacitor[J]. Materials Today Communications, 2023, 36: 106788.
[33] WU R H, SEO S, MA L Y, et al. Full-fiber auxetic-interlaced yarn sensor for sign-language translation glove assisted by artificial neural network[J]. Nano-Micro Letters, 2022, 14(1): 139.
[34] TENG Y C, WEI J, DU H B, et al. A solar and thermal multi-sensing microfiber supercapacitor with intelligent self-conditioned capacitance and body temperature monitoring[J]. Journal of Materials Chemistry A, 2020, 8(23): 11695-11711.
[35] HAN X, FAN M J, YUE X Y, et al. Linear flexible capacitive sensor with double helix structure based on multi-needle water-bath electrospinning technology[J]. Smart Material Structures, 2023, 32(3): 035012.
[36] 范梦晶, 吴玲娅, 周歆如, 等. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
FAN Mengjing, WU Lingya, ZHOU Xinru, et al. Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn[J]. Journal of Textile Research, 2023, 44(11): 67-73.(in Chinese)
[37] QI K, WANG H B, YOU X L, et al. Core-sheath nanofiber yarn for textile pressure sensor with high pressure sensitivity and spatial tactile acuity[J]. Journal of Colloid and Interface Science, 2020, 561: 93-103.
[38] TANG J, WU Y T, MA S D, et al. Flexible strain sensor based on CNT/TPU composite nanofiber yarn for smart sports bandage[J]. Composites Part B: Engineering, 2022, 232: 109605.
[39] TANG J, WU Y T, MA S D, et al. Sensing mechanism of a flexible strain sensor developed directly using electrospun composite nanofiber yarn with ternary carbon nanomaterials[J]. iScience, 2022, 25(10): 105162.
[40] SU C L, YU Q H, YANG X, et al. One-step braided tubular supercapacitor for integration with a fibrous strain sensor as a wearable fibrous self-powered integrated system[J]. ACS Applied Energy Materials, 2023, 6(20): 10564-10577.
[41] NING C, CHENG R W, JIANG Y, et al. Helical fiber strain sensors based on triboelectric nanogenerators for self-powered human respiratory monitoring[J]. ACS Nano, 2022, 16(2): 2811-2821.
[42] 冯雨果,刘宇,周晋. 可穿戴惯性传感器在全膝关节置换术后步态分析中的应用进展 [J]. 皮革科学与工程, 2023, 33(6): 52-58.
FENG Yuguo, LIU Yu, ZHOU Jin.A review of gait analysis after total knee arthroplasty using wearable inertial measurement sensors [J].Leather Science and Engineering, 2023, 33(6): 52-58.
[43] SHUAI L, GUO Z H, ZHANG P P, et al. Stretchable, self-healing, conductive hydrogel fibers for strain sensing and triboelectric energy-harvesting smart textiles[J]. Nano Energy, 2020, 78: 105389.
[44] ZHANG C, OUYANG W Y, ZHANG L, et al. A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications[J]. Microsystems and Nanoengineering, 2023, 9: 158.
[45] TRUONG T, KIM J. A wearable strain sensor utilizing shape memory polymer/carbon nanotube composites measuring respiration movements[J]. Polymers, 2024, 16(3): 373.
[46] JAMATIA T, MATYAS J, OLEJNIK R, et al. Wearable and stretchable SEBS/CB polymer conductive strand as a piezoresistive strain sensor[J]. Polymers, 2023, 15(7): 1618.
[47] NIU L, WANG J, WANG K, et al. High-speed sirospun conductive yarn for stretchable embedded knitted circuit and self-powered wearable device[J]. Advanced Fiber Materials, 2023, 5(1): 154-167.
(责任编辑:张 雪)