[1]林瑞冰,贾 静,徐平华*,等.融合视觉感知机制的品牌女装设色解析[J].服装学报,2023,8(06):546-553.
 LIN Ruibing,JIA Jing,XU Pinghua*,et al.Color Parsing of Female Brand Costume Based on Visual Perception Mechanism[J].Journal of Clothing Research,2023,8(06):546-553.
点击复制

融合视觉感知机制的品牌女装设色解析()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第8卷
期数:
2023年06期
页码:
546-553
栏目:
服装时尚
出版日期:
2023-12-31

文章信息/Info

Title:
Color Parsing of Female Brand Costume Based on Visual Perception Mechanism
作者:
林瑞冰1;  贾 静1;  徐平华*1; 2; 3;  曹竟文1;  孙晓婉1
1.浙江理工大学 服装学院,浙江 杭州 310018; 2. 浙江理工大学 浙江省哲学社会科学重点培育研究基地数智风格与创意设计研究中心,浙江 杭州 310018; 3. 浙江理工大学 丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室,浙江 杭州 310018
Author(s):
LIN Ruibing1;  JIA Jing1;  XU Pinghua*1; 2; 3;  CAO Jingwen1;  SUN Xiaowan1
1.School of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Digital Intelligence Style and Creative Design Research Center, Key Research Center of Philosophy and Social Sciences,Zhejiang Sci-Tech University, Hangzhou 310018, China; 3.Key Laboratory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism,Zhejiang Sci-Tech University,Hangzhou 310018, China
分类号:
TS 941.2
文献标志码:
A
摘要:
为提取更具视觉感知的服饰意象色彩,解析品牌服装设色形态,提出融合视觉显著性的颜色聚类算法。在对比不同视觉显著性算法效果的基础上,利用GLGOV显著算法设置K-means区域权重,对聚类色及其占服装总用色量的比例进行加权优化,并对3个品牌女装用色情况作实证分析。结果表明,Chanel中性色使用较多; Fendi用色量较均衡,各色彩占比差小于21%; Umawang整体色彩偏暗,灰棕色调占比大于70%。该方法能够快速生成系列服饰图像色彩解析模型,为品牌服饰色彩管理和设计提供方法。
Abstract:
In order to extract costume colors that is more consistent with visual perception and parse the color of female brand costumes, a color clustering algorithm based on visual saliency is proposed. Through comparisons, the K-means region weight is determined using the GLGOV saliency model to optimize the clustering color and proportion. The experimental part focuses on the colors of three representative brands. The results show that Chanel predominantly employs neutral colors. Fendi exhibits a more balanced color proportion, with differences of less than 21%. Umawang’s overall color scheme is dark, with taupe constituting more than 70% of the palette. This method can quickly generate the color parsing model of series costume images and provide a foundation for brand costume color management and design.

参考文献/References:

[1] 苗沛源,方周倩,孙婷,等.民族织锦的主色提取方法[J].纺织学报,2021,42(9):120-125.
MIAO Peiyuan,FANG Zhouqian,SUN Ting,et al. Primary color extraction method for brocade[J]. Journal of Textile Research, 2021,42(9):120-125.(in Chinese)
[2] 徐云,练佳,张真真.连南排瑶服饰色彩心理效应的创新研究[J].丝绸,2021,58(2):115-121.
XU Yun,LIAN Jia,ZHANG Zhenzhen. Innovative research on the color psychological effect of Paiyao costumes in Liannan county[J]. Journal of Silk, 2021,58(2):115-121.(in Chinese)
[3] 陈依婷,潘春宇,张毅.基于惠山泥人服饰色彩元素的丝巾创新设计[J].服装学报,2020,5(5):421- 426.
CHEN Yiting,PAN Chunyu,ZHANG Yi.Innovative design of silk scarf based on the clothing color elements of Huishan clay figurine[J]. Journal of Clothing Research, 2020,5(5):421- 426.(in Chinese)
[4] 李愚,刘肖健,孙艳,等.产品配色设计的色彩邻接网络模型[J]. 计算机集成制造系统, 2019, 25(9): 2355-
2364.
LI Yu,LIU Xiaojian,SUN Yan,et al.Color adjacent network model for product color matching design[J].Computer Integrated Manufacturing Systems,2019,25(9):2355-2364.(in Chinese)
[5] 徐明慧,徐平华,韦秋菊,等.基于网络关系模型的品牌女装配色解析[J]. 纺织学报, 2021,42(11):137-142,
150.
XU Minghui,XU Pinghua,WEI Qiuju,et al.Color parsing of female brand clothing based on nexus network modeling[J].Journal of Textile Research, 2021,42(11):137-142,150.(in Chinese)
[6] BOUTARFASS S, BESSERER B. Colour palette as support for CNN colorization[C]//2020 Fourth International Conference on Multimedia Computing, Networking and Applications(MCNA). Valencia: IEEE, 2020: 44-50.
[7] ALIREZAZADEH P, YAGHOUBI E, ASSUNCAO E, et al. Pose switch-based convolutional neural network for clothing analysis in visual surveillance environ-ment[C]//2019 International Conference of the Biometrics Special Interest Group.Beijing:IEEE,2019:
1-5.
[8] ZHOUF H, ZHANG B, ZHAI J P. Clothing colour clustering method based on CC_K-Means algo-rithm[C]//2021 International Conference on Computer Information Science and Artificial Intelligence.Kunming: IEEE, 2021: 290-293.
[9] BUNDESEN C. A theory of visual attention[J]. Psych-ological Review, 1990, 97(4): 523-547.
[10] ITTI L, KOCH C, NIEBUR E. A model of saliency- based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998, 20(11): 1254-1259.
[11] HAREL J, KOCH C, PERONA P. Graph-based visual saliency[M]//Advances in Neural Information Proce-ssing Systems, Boston:The MIT Press,2007:545-552.
[12] ACHANTA R, HEMAMI S, ESTRADA F, et al. Frequency-tuned salient region detection[C]//2009 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2009: 1597-1604.
[13] CHENG M M, MITRA N J, HUANG X L, et al. Global contrast based salient region detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 37(3): 569-582.
[14] ZHOU X S, ZENG P. A bottom-up saliency detection method[C]//2021 International Conference on Intelligent Computing, Automation and Applications(ICAA). Nanjing: IEEE, 2021: 496-504.
[15] MAHDI A, QIN J, CROSBY G. DeepFeat: a bottom-up and top-down saliency model based on deep features of convolutional neural networks[J]. IEEE Transactions on Cognitive and Developmental Systems, 2020, 12(1): 54-63.
[16] SHARIATMADAR Z S, FAEZ K. Visual saliency detection via integrating bottom-up and top-down information[J]. Optik, 2019(178): 1195-1207.
[17] YAN Y J, REN J C, SUN G Y, et al. Unsupervised image saliency detection with Gestalt-laws guided optimization and visual attention based refinement[J]. Pattern Recognition, 2019(79): 65-78.
[18] XIAO X L, ZHOU Y C, GONG Y J.RGB-’D’saliency detection with pseudo depth[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2126-2139.
[19] WU X, MA X, ZHANG J, et al. Salient object detection via deformed smoothness constraint[C]//2018 25th IEEE International Conference on Image Processing(ICIP).Athens: IEEE, 2018: 2815-2819.
[20] LOU J, WANG H, CHEN L T, et al. Exploiting color name space for salient object detection[J]. Multimedia Tools and Applications, 2020, 79(15): 10873-10897.
[21] 宁媛,李皖.图像去噪的几种方法分析比较[J].贵州工业大学学报(自然科学版),2005, 34(4):63- 66.
NING Yuan, LI Wan. Analysis and comparison of some techniques on image denoising[J]. Journal of Guizhou University of Technology(Natural Science Edition), 2005, 34(4):63- 66.(in Chinese)
[22] KUMAR A, SODHI S S. Comparative analysis of gaussian filter, median filter and denoise autoeno-coder[C]//2020 7th International Conference on Computing for Sustainable Global Development(INDIACom). New Delhi:IEEE, 2020: 45-51.
(责任编辑:卢 杰)

更新日期/Last Update: 2023-10-31