参考文献/References:
[1] YANG Z L, SU Z, YANG Y, et al. From recommendation to generation: a novel fashion clothing advising framework[C]//2018 7th International Conference on Digital Home(ICDH). Guilin: IEEE, 2018: 180-186.
[2] DENG Q Q, WANG R M, GONG Z X, et al. Research and implementation of personalized clothing recommendation algorithm[C]//2018 7th International Conference on Digital Home(ICDH).Guilin:IEEE, 2018: 219-223.
[3] 胡觉亮, 王正方, 韩曙光. 基于用户偏好的个性化服装推荐模式研究[J]. 浙江理工大学学报(社会科学版), 2018, 40(2): 136-143.
HU Jueliang, WANG Zhengfang, HAN Shuguang. Research on personalized clothing recommendation mode based on user preference[J]. Journal of Zhejiang Sci-Tech University(Social Sciences Edition), 2018, 40(2): 136-143.(in Chinese)
[4] 单毓馥, 李丙洋. 电子商务推荐系统中服装推荐问题研究[J]. 毛纺科技, 2016, 44(5): 66- 69.
SHAN Yufu, LI Bingyang. Researeh on apparel recommendation in e-commerce recommender systems[J]. Wool Textile Journal, 2016, 44(5): 66- 69.(in Chinese)
[5] 王义, 马尚才. 基于用户行为的个性化推荐系统的设计与应用[J]. 计算机系统应用, 2010, 19(8): 29-33.
WANG Yi, MA Shangcai. Design and application of personalized recommendation system based on users behavior[J]. Computer Systems and Applications, 2010, 19(8): 29-33.(in Chinese)
[6] 艾黎. 基于商品属性与用户聚类的个性化服装推荐研究[J]. 现代情报, 2015, 35(9): 165-170.
AI Li. The research on personalized recommendation based on commodity attribute and user clustering[J]. Journal of Modern Information, 2015, 35(9): 165-170.(in Chinese)
[7] 蔡丽玲, 季晓芬, 庞琛. 服装在线评论有用性的影响因素[J]. 纺织学报, 2018, 39(8): 158-163.
CAI Liling, JI Xiaofen, PANG Chen. Influence factors of helpfulness of online review on garment products[J]. Journal of Textile Research, 2018, 39(8): 158-163.(in Chinese)
[8] 李鑫柏, 吴鑫然, 岳昆. 基于贝叶斯网的开放世界知识图谱补全[J]. 计算机工程, 2021, 47(6): 104-114.
LI Xinbai, WU Xinran, YUE Kun. Open-world know-ledge graph completion based on Bayesian network[J]. Computer Engineering, 2021, 47(6): 104-114.(in Chinese)
[9] 杜志强, 李钰, 张叶廷, 等. 自然灾害应急知识图谱构建方法研究[J]. 武汉大学学报(信息科学版), 2020, 45(9): 1344-1355.
DU Zhiqiang, LI Yu, ZHANG Yeting, et al. Knowledge graph construction method on natural disaster emergency[J]. Geomatics and Information Science of Wuhan University, 2020, 45(9): 1344-1355.(in Chinese)
[10] ZHU M, ZHEN D S. Chinese named entity recognition for clothing knowledge graph construction[J]. IOP Confe-rence Series: Materials Science and Engineering, 2019(1): 012043.
[11] WEN Y F, LIU X Q, XU B. Personalized clothing recommendation based on knowledge graph[C]//2018 International Conference on Audio, Language and Image Processing(ICALIP).Shanghai:IEEE, 2018: 1-5.
[12] 甄德胜. 基于服装领域知识图谱的推荐技术应用研究[D]. 上海: 东华大学, 2020.
[13] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3): 582- 600.
LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of Computer Research and Development, 2016, 53(3): 582- 600.(in Chinese)
[14] 吴长亮. 消费者决策角度下的产品属性分类体系研究[J]. 商业时代, 2011(19): 24-25.
WU Changliang.Research on product attribute classification system from the perspective of consumer decision[J]. Commercial Times, 2011(19): 24-25.(in Chinese)
[15] WIRTZ J. Halo in customer satisfaction measures[J]. International Journal of Service Industry Management, 2003, 14(1): 96-119.
[16] 梁建芳, 李筱胜. 电子商务环境下女性服装消费行为分析[J]. 浙江理工大学学报, 2011, 28(5): 728-733.
LIANG Jianfang, LI Xiaosheng. Analysis on female clothing consumer behavior under e-commerce environment[J]. Journal of Zhejiang Sci-Tech University, 2011, 28(5): 728-733.(in Chinese)
[17] LIU S, LIU L Q, YAN S C. Fashion analysis: current techniques and future directions[J]. IEEE Multimedia, 2014, 21(2): 72-79.
[18] 吴苗苗, 刘骊, 付晓东, 等. 款式特征描述符的服装图像细粒度分类方法[J]. 计算机辅助设计与图形学学报, 2019, 31(5): 780-791.
WU Miaomiao, LIU Li, FU Xiaodong, et al. Fine-grained clothing image classification by style feature description[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31(5): 780-791.(in Chinese)
[19] 汪涛, 王魁, 陈厚. 时间间隔何时能够提高在线评论的有用性感知——基于归因理论的视角[J]. 商业经济与管理, 2015(2): 46-56.
WANG Tao, WANG Kui, CHEN Hou. The impact of temporal distance on the increase of the perceived usefulness of online reviews—from the perspective of the attribution theory[J]. Journal of Business Economics, 2015(2): 46-56.(in Chinese)
[20] HUANG X W, FANG Q, QIAN S S, et al. Explainable interaction-driven user modeling over knowledge graph for sequential recommendation[C]//Proceedings of the 27th ACM International Conference on Multimedia.New York: ACM, 2019: 548-556.
[21] 袁泉, 成振华, 江洋. 基于知识图谱和协同过滤的电影推荐算法研究[J]. 计算机工程与科学, 2020, 42(4): 714-721.
YUAN Quan, CHENG Zhenhua, JIANG Yang. A movie recommendation algorithm based on knowledge graph and collaborative filtering[J]. Computer Engineering and Science, 2020, 42(4): 714-721.(in Chinese)
[22] 汤伟韬, 余敦辉, 魏世伟. 融合知识图谱与用户评论的商品推荐算法[J]. 计算机工程, 2020, 46(8): 93-100.
TANG Weitao, YU Dunhui, WEI Shiwei. Commodity recommendation algorithm fusing with knowledge graph and user comment[J]. Computer Engineering, 2020, 46(8): 93-100.(in Chinese)
[23] 王根生, 潘方正. 融合语义相似度的协同过滤推荐算法[J]. 中国科学技术大学学报, 2019, 49(10): 835-841.
WANG Gensheng, PAN Fangzheng. Collaborative filtering recommendation algorithm based on semantic similarity[J]. Journal of University of Science and Technology of China, 2019, 49(10): 835-841.(in Chinese)
(责任编辑:沈天琦)