[1]司梦楚,季同同,张春明*.服装智能推荐系统在电商平台中的应用[J].服装学报,2019,4(06):498-503.
 SI Mengchu,JI Tongtong,ZHANG Chunming*.Application of Clothing Intelligent Recommendation System inE-Commerce Platform[J].Journal of Clothing Research,2019,4(06):498-503.
点击复制

服装智能推荐系统在电商平台中的应用()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第4卷
期数:
2019年06期
页码:
498-503
栏目:
服装信息技术
出版日期:
2019-12-31

文章信息/Info

Title:
Application of Clothing Intelligent Recommendation System inE-Commerce Platform
作者:
司梦楚1; 2;  季同同1; 2;  张春明*1; 2; 3
1.青岛大学 纺织服装学院,山东 青岛 266071; 2. 青岛大学 纺织产业创新研究院,山东 青岛 266071; 3. 孚日集团股份有限公司,山东 高密 261500
Author(s):
SI Mengchu1; 2;  JI Tongtong1; 2;  ZHANG Chunming*1; 2; 3
1.College of Textiles and Clothing, Qingdao University, Qingdao 266071, China; 2. Textile Industry Innovation Research Institute, Qingdao University, Qingdao 266071, China; 3. Sunvim Group Co., Ltd., Gaomi 261500, China
分类号:
F 724.6; F 407.86
文献标志码:
A
摘要:
为进一步探索电子商务中服装类商品的个性化推荐机制,在现有推荐系统基础上利用余弦相似度及Slope One算法提出CS-SO推荐算法。通过案例分析论证利用向量空间模型中的两个向量间夹角的余弦值衡量服装产品间相似度的方法,并总结出基于新产品与已评估产品之间的平均偏好值差异预测被荐者对新项目兴趣的推荐方法。
Abstract:
In order to further explore the personalized recommendation mechanism of clothing products in e-commerce, this study proposed a Cosine Similarity-Slope One algorithm based on collaborative filtering recommendation. The case study proved that the cosine value of the angle between two vectors in the vector space model could be used to measure the similarity between garment products. This paper also summarized how to predict the recommender’s interest in the new project based on the average preference value difference between the new product and the user’s evaluated product.

参考文献/References:

[1] SARWAR B,KARYPIS G,KONSTON J,et al.Item-based collaborative filtering recommendation algorithms[C].Proceedings of the 10th international conference on the World Wide Web.Hong Kong: ACM,2001: 285-295.
[2] LINDEN G D, JACOBI J A, BENSON E A.Collaborative recommendations using item-to-item similarity mappings:US 6266649B1[P].2001-07-24.
[3] KLEINBERG J,SANDLER M.Using mixture models for collaborative filtering[J].Journal of Computer and System Sciences,2008, 74(1): 49-69.
[4] SON J, KIM S B.Content-based filtering for recommendation systems using multiattribute networks[J].Expert Systems with Applications, 2017, 89: 404- 412.
[5] KOOHI H, KIANI K.A new method to find neighbor users that improves the performance of collaborative Filtering[J].Expert Systems with Applications, 2017, 83:30-39.
[6] GEUENS S, COUSSEMENT K, De BOCK K W. A framework for configuring collaborative filtering-based recommendations derived from purchase data[J].European Journal of Operational Research.2018,265(1):208-218.
[7] 何佳知.基于内容和协同过滤的混合算法在推荐系统中的应用研究[D].上海:东华大学,2016:8-12.
[8] WEI Jianliang, MENG Fei, ARUNKUMAR N.A personalized authoritative user-based recommendation for social tagging[J].Future Generation Computer Systems, 2018, 86: 355-361.
[9] 郑充林.协同过滤的服装推荐算法的改进研究[D].上海:东华大学,2013:1-5.
[10] 陈丹儿,应玉龙.基于项目属性和BP神经网络的协同过滤推荐[J].信息技术,2015(3):70-73.
CHEN Dan’er, YING Yulong.Collaborative filtering method based on item’s characteristics and BP neural network[J].Information Technology, 2015(3):70-73.(in Chinese)
[11] 单毓馥,李丙洋.电子商务推荐系统中服装推荐问题研究[J].毛纺科技,2016,44(5):66-69.
SHAN Yufu,LI Bingyang.Researeh on apparel recommendation in e-commerce recommender systems[J]. Wool Textile Journal,2016,44(5):66-69.(in Chinese)
[12] U Liji, CHAI Yahui, CHEN Jianrui.Improved persona-lized recommendation based on user attributes clustering and score matrix filling[J].Computer Standards and Interfaces, 2018,57:59-67.
[13] WANG Hongbing, TAO Yong, YU Qi, et al.Incorporating both qualitative and quantitative preferences for service recommendation[J].Journal of Parallel and Distributed Computing, 2018,114:46-69.
[14] 武峰.阿里巴巴“双11”技术的演变历程、发展理念及未来创新建议[J].经营与管理,2018(3):18-21.
WU Feng.Alibaba "double 11" technology evolution process, development concept and future innovation suggestions[J].Management and Administration,2018(3):18-21.(in Chinese)
[15] 杨守德,赵德海.中国网络零售业发展的收敛性与空间溢出效应研究[J].经济体制改革,2018(3):38- 45.
YANG Shoude, ZHAO Dehai.Research on the convergence and spatial spillover effect of the development of China’s network retail industry[J].Reform of Economic System,2018(3):38- 45.(in Chinese)
[16] 赵思思,吴锋,舒磊.考虑消费者行为的电商脉冲式需求形成机理研究[J].软科学,2018(8):98-100,116.
ZHAO Sisi, WU Feng, SHU Lei.Research on formation mechanism of online pulse demand considering customer behavior[J].Soft Science, 2018(8):98-100,116.(in Chinese)
[17] SEJAL D, GANESHSINGH T, VENUGOPAL K R, et al.Image recommendation based on ANOVA cosine similarity[J].Procedia Computer Science, 2016,89:562-567.
[18] WANG Qingxian, LUO Xin, LI Yan, et al.Incremental slope-one recommenders[J].Neurocomputing, 2018, 272: 606-618.
[19] 王行甫,付欢欢,王琳.基于余弦相似度和实例加权改进的贝叶斯算法[J].计算机系统应用,2016,25(8):166-170.
WANG Xingfu, FU Huanhuan, WANG Lin.Improved Na?ve Bayes algorithm based on weighted instance with cosine similarity[J].Computer Systems Applications, 2016, 25(8):166-170.(in Chinese)
[20] 夏修臣,王秀英.基于余弦相似度的改进C 4.5决策树算法[J].计算机工程与设计,2018,39(1):120-125.
XIA Xiuchen, WANG Xiuying.Improved C 4.5 decision tree algorithm based on cosine similarity[J].Computer Engineering and Design,2018,39(1):120-125.(in Chinese)
[21] DADOUCHI C, AGARD B.Lowering penalties related to stock-outs by shifting demand in product recommendation systems[J].Decision Support Systems,2018, 114:61-69.
[22] WANG Qingxian, LUO Xin, LI Yan, et al.Incremental Slope-One recommenders[J].Neurocomputing,2018, 272: 606-618.(责任编辑:邢宝妹)

相似文献/References:

[1]杜娟灵,王永进*.3D全息影像技术在服装领域的应用[J].服装学报,2019,4(02):106.
 DU Juanling,WANG Yongjin*.Application of 3D Holographic Image Technology in Garment Filed[J].Journal of Clothing Research,2019,4(06):106.

更新日期/Last Update: 2019-12-30