[1]戴玉芳,李依璇,杜劲松*,等.服装C2M定制模式中的关键技术[J].服装学报,2018,3(05):390-394.
 DAI Yufang,LI Yixuan,DU Jinsong*,et al.Key Technologies in Industrialized Garment Customization Based on C2M Mode[J].Journal of Clothing Research,2018,3(05):390-394.
点击复制

服装C2M定制模式中的关键技术()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第3卷
期数:
2018年05期
页码:
390-394
栏目:
服装信息技术
出版日期:
2018-10-30

文章信息/Info

Title:
Key Technologies in Industrialized Garment Customization Based on C2M Mode
作者:
戴玉芳1;  李依璇1;  杜劲松*1; 2;  陈文祎1
1.东华大学 服装与艺术设计学院,上海 200051; 2.同济大学 上海国际设计创新研究院,上海 200080
Author(s):
DAI Yufang1;  LI Yixuan1;  DU Jinsong*1; 2;  CHEN Wenyi1
1. Fashion and Design Institute, Donghua University, Shanghai 200051, China; 2. Shanghai International Institute of Design and Innovation, Tongji University, Shanghai 200080, China
分类号:
F 426.86
文献标志码:
A
摘要:
为使服装C2M定制模式更准确地获取客户需求信息,从而提供更高效的系统决策,将大数据分析有效应用到工业化定制中,建立顾客画像分析和基于系统集成的、数据驱动生产的解决方案,确保系统信息流的准确性和准时性。在文献分析的基础上,解析了现阶段C2M定制模式中的关键技术问题,并提出针对服装定制端和生产过程的解决方案。
Abstract:
In order to solve the problem of the acquisition of customer-requirement information by using the C2M customization mode, big data analysis techniques is applied in the process of industrialized clothing customization to establish a solution of customer portrait analysis and data-driven production based on system integration, so as to ensure the accuracy and timeliness of system information flow. After reviewing the related research literatures, this paper summarizes current key technical problems of C2M mode, and a solution is put forward for the customization end and production process of clothing industry.

参考文献/References:

[1] 刘晓慧, 郑广泽. C2M模式下服装智能个性化定制的优势及发展[J]. 服装学报, 2016, 1(5):477- 481.
LIU Xiaohui, ZHENG Guangze. Review on advantages and development of the intelligent and personalized garment industry in C2M mode[J]. Journal of Clothing Research, 2016, 1(5): 477- 481.(in Chinese)
[2] 何亚男, 王佩国, 陈柯如. 服装D2C2M众设个性定制生态链平台研究[J]. 纺织导报, 2017(10):94-97.
HE Yanan, WANG Peiguo, CHEN Keru.A research on garment D2C2M ecological chain platform for personalized customization[J].China Textile Leader, 2017(10):94-97.(in Chinese)
[3] 朱伟明, 谢琴, 彭卉. 男西服数字化智能化量身定制系统研发[J]. 纺织学报, 2017, 38(4):151-157.
ZHU Weiming, XIE Qin, PENG Hui. Digitalized and intelligentized customization system of men’s suit[J]. Journal of Textile Research, 2017, 38(4): 151-157.(in Chinese)
[4] 陈国强,李倩倩.基于3D虚拟仿真技术的服装设计应用研究[J].纺织科技进展,2017(9):49-50,61.
CHEN Guoqiang, LI Qianqian. Application research on costume design based on 3D virtual simulation technology[J]. Progress in Textile Science and Technology, 2017(9): 49-50,61.(in Chinese)
[5] 冯利, 刘晓刚, 顾雯. 基于评价主体视角的服装设计评价过程[J]. 纺织学报, 2017, 38(3):126-130.
FENG Li, LIU Xiaogang, GU Wen. Evaluation process of costume design based on evaluation subject perspective[J]. Journal of Textile Research, 2017, 38(3): 126-130.(in Chinese)
[6] 李坚飞,李允尧.服装连锁零售终端服务质量保障体系研究——基于双因素激励理论视角[J].中国流通经济,2010(7):62- 65.
LI Jianfei, LI Yunyao. Research on the guarantee system of POS service quality in garment chain stores—based on two-factor incentive theory[J]. China Business and Market,2010(7):62- 65.(in Chinese)
[7] 吕佳,陈东生.基于聚类算法的服装感性数据挖掘方法[J].纺织学报,2014,35(5):108-112.
LYU Jia, CHEN Dongsheng. Fashion perceptual data mining based on clustering algorithm[J].Journal of Textile Research, 2014,35(5): 108-112.(in Chinese)
[8] 郭力子, 吴建艺. 基于生产资源知识库的服装大规模定制系统的研究[J]. 纺织导报, 2013(12):76-78.
GUO Lizi, WU Jianyi.A study on apparel mass customization system based on knowledge base of production resources[J]. China Textile Leader, 2013(12): 76-78.(in Chinese)
[9] 程浩, 袁红兵. 基于智慧工厂实验平台的制造执行系统(MES)软件系统设计[J]. 制造业自动化, 2017, 39(7):142-146.
CHENG Hao, YUAN Hongbing. Software system design of manufacturing execution system(MES)based on intelli- gent factory experiment platform[J]. Manufacturing Automation, 2017, 39(7): 142-146.(in Chinese)
[10] 闫晓莉.ERP与MES集成技术研究[J].现代工业经济和信息化,2017,7(11):99-100.
YAN Xiaoli. Research on integration technology of ERP and MES[J]. Moden Industrial Economy and Informationization, 2017,7(11): 99-100.(in Chinese)
[11] 尹作重, 李江华, 杜峻,等. RFID与ERP、MES等系统的集成模型[J]. 制造业自动化, 2016, 38(8):115-119.
YIN Zuozhong, LI Jianghua, DU Jun, et al. Integration model between radio frequency identification and ERP,MES system[J]. Manufacturing Automation, 2016, 38(8): 115-119.(in Chinese)
[12] 郑树泉, 覃海焕, 王倩. 工业大数据技术与架构[J]. 大数据, 2017,3(4):67-80.
ZHENG Shuquan, QIN Haihuan, WANG Qian.Industrial big data technologies and architecture[J]. Big Data Research, 2017,3(4): 67-80.(in Chinese)
[13] DAVENPORT T H. 大数据分析:数据驱动的企业绩效优化、过程管理和运营决策[M].吴峻申,译.北京:机械工业出版社, 2015.
[14] 李恒超, 林鸿飞, 杨亮,等. 一种用于构建用户画像的二级融合算法框架[J]. 计算机科学, 2018,45(1):157-161.
LI Hengchao, LIN Hongfei, YANG Liang, et al. Two-level stacking algorithm framework for building user portrait[J]. Computer Science, 2018,45(1): 157-161.(in Chinese)
[15] 黄明峰.工业大数据发展态势与典型应用[J].电信科学,2016,32(7):175-178.
HUANG Mingfeng. Development trend and typical applications of industrial big data[J]. Telecommunications Science, 2016,32(7): 175-178.(in Chinese)
[16] 吴立金,夏冉,詹红燕,等.基于深度学习的故障预测技术研究[J].计算机测量与控制,2018,26(2):9-12.
WU Lijin, XIA Ran, ZHAN Hongyan, et al. Fault prediction technology based on deep learning[J]. Computer Measurement and Control,2018,26(2): 9-12.(in Chinese)
(责任编辑:沈天琦,邢宝妹)

更新日期/Last Update: 2018-10-30