[1]林 琳,徐玉婷,何 瑛*.服装类用户生成内容封面特征对消费者点击行为的影响[J].服装学报,2025,10(04):368-376.
 LIN Lin,XU Yuting,HE Ying*.Influence of Clothing User-Generated Content Cover Features on Consumer Click Behavior[J].Journal of Clothing Research,2025,10(04):368-376.
点击复制

服装类用户生成内容封面特征对消费者点击行为的影响()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年04期
页码:
368-376
栏目:
服装营销
出版日期:
2025-09-13

文章信息/Info

Title:
Influence of Clothing User-Generated Content Cover Features on Consumer Click Behavior
作者:
林 琳1;  徐玉婷1;  何 瑛*1; 2; 3
1.浙江理工大学 服装学院,浙江 杭州 310018; 2. 浙江理工大学 丝绸文化传承与产品设计数字化技术文化和旅游部重点实验室,浙江 杭州 310018; 3. 浙江理工大学 浙江省服装工程技术研究中心,浙江 杭州 310018
Author(s):
LIN Lin1;  XU Yuting1;  HE Ying*1; 2; 3
1.School of Fashion Design and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. Key Labora-tory of Silk Culture Heritage and Products Design Digital Technology, Ministry of Culture and Tourism, Zhejiang Sci-Tech University, Hangzhou 310018, China; 3. Apparel Engineering Technology Research Center of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
分类号:
F 713.55
文献标志码:
A
摘要:
摘 要:为提升社交媒体中服装类用户生成内容(UGC)的点击率,提出一种针对UGC封面的评价和测量方法。结合社交平台中UGC封面的特点,构建视觉特征和文本特征两个维度共13个关键特征的评价方案,应用图像处理技术适配并优化各特征的测量方法; 以小红书平台4 280个服装UGC封面为样本,通过负二项回归模型分析视觉特征对点击量的影响。结果表明,图片尺寸、模糊程度、前景位置、前景占比、人脸遮挡度、背景亮度、背景复杂度7个特征均显著影响消费者点击量。研究结果为社交媒体创作者的UGC创作活动及社交平台的UGC评价机制提供参考。
Abstract:
To improve the click-through rate of clothing user-generated content(UGC)on social media, this study proposed an evaluation and measurement method specifically for UGC covers. Incorporating the characteristics of UGC covers in social platforms, it constructed an evaluation scheme comprising two dimensions of visual features and textual features, with 13 key characteristics. Image processing techniques were applied to adapt and optimize the measurement methods for each feature. Taking 4 280 fashion UGC covers from the rednote platform as samples, this paper analyzed the impact of visual features on click-through volume through a negative binomial regression model. The results indicate that seven features all significantly influenced consumer click-through rates, including image size, blur level, foreground position, foreground proportion, facial occlusion degree, background brightness, and background complexity. The findings provide practical references for social media creators’ UGC production activities and the UGC evaluation mechanisms of social platforms.

参考文献/References:

[1] 李雪, 沈雷. 服装品牌在新媒体环境下的营销策略研究[J]. 丝绸, 2020, 57(10): 65-70.
LI Xue, SHEN Lei. Research on marketing strategy of clothing brands in the new media environment[J]. Journal of Silk, 2020, 57(10): 65-70.(in Chinese)
[2] 周倩颖, 曲洪建. 穿搭视频上传者视频发布对消费者服装购买意愿的影响[J]. 服装学报, 2023, 8(3): 276-282.
ZHOU Qianying, QU Hongjian. Impact of the video posting of uploader wearing on consumers’ willingness to buy clothes[J]. Journal of Clothing Research, 2023, 8(3): 276-282.(in Chinese)
[3] 杨珩宇, 朱奕. 服装测评信息特征对消费者购买意愿影响[J]. 丝绸, 2025, 62(3): 89-97.
YANG Hengyu, ZHU Yi. Influence of clothing evaluation information characteristics on consumers’ purchase intention[J]. Journal of Silk, 2025, 62(3): 89-97.(in Chinese)
[4] 叶许红, 韩芳芳, 翁挺婷. 网购平台产品图片视觉特征的影响作用研究[J]. 管理工程学报, 2019, 33(2): 84-91.
YE Xuhong, HAN Fangfang, WENG Tingting. The effects of product pictures’ visual features in the context of online purchasing[J]. Journal of Industrial Engineering and Engineering Management, 2019, 33(2): 84-91.(in Chinese)
[5] 于琛琪, 穆芸. 潮牌服装网店视觉营销对购买意愿的影响[J]. 毛纺科技, 2021, 49(10): 91-99.
YU Chenqi, MU Yun. Research on the influence of visual merchandising of street fashion brand online stores on consumers’ purchase intention[J]. Wool Textile Journal, 2021, 49(10): 91-99.(in Chinese)
[6] 武瑞娟, 欧晓倩, 李东进. 图片呈现对消费者关注及接近行为影响效应研究[J]. 管理评论, 2021, 33(12): 176-186.
WU Ruijuan, OU Xiaoqian, LI Dongjin. The effect of picture presentation on consumer’s attention and approach behavior[J]. Management Review, 2021, 33(12): 176-186.(in Chinese)
[7] GRAHAM D J, REDIES C. Statistical regularities in art: relations with visual coding and perception[J]. Vision Research, 2010, 50(16): 1503-1509.
[8] CEROSALETTI C D, LOUI A C. Measuring the perceived aesthetic quality of photographic images[C]//2009 International Workshop on Quality of Multimedia Experience. San Diego: IEEE, 2009: 47-52.
[9] LIU L Q, PREOTIUC-PIETRO D, SAMANI Z R, et al. Analyzing personality through social media profile picture choice[C]//Proceedings of the International AAAI Conference on Web and Social Media.Cologne:ICWSM,2016: 211-220.
[10] KONG S, SHEN X H, LIN Z, et al. Photo aesthetics ranking network with attributes and content adaptation[C]//Computer Vision-ECCV 2016. Cham: Springer, 2016: 662- 679.
[11] WANG M Y, LI X, CHAU P Y K. Leveraging image-processing techniques for empirical research: feasibility and reliability in online shopping context[J]. Information Systems Frontiers, 2021, 23(3): 607-626.
[12] FERWERDA B, TKALCIC M. Predicting users’ personality from instagram pictures: using visual and/or content features? [C]//Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. Singapore: ACM, 2018: 157-161.
[13] TREISMAN A M, GELADE G. A feature-integration theory of attention[J]. Cognitive Psychology, 1980, 12(1): 97-136.
[14] LI Y Y, XIE Y. Is a picture worth a thousand words? An empirical study of image content and social media engagement[J]. Journal of Marketing Research, 2020, 57(1): 1-19.
[15] AZIMI J, ZHANG R F, ZHOU Y, et al. Visual appearance of display ads and its effect on click through rate[C]//Proceedings of the 21st ACM International Conference on Information and Know-ledge Management. Maui: ACM, 2012: 495-504.
[16] XIA H S, PAN X T, ZHOU Y J, et al. Creating the best first impression: designing online product photos to increase sales[J]. Decision Support Systems, 2020, 131: 113235.
[17] TONG H H, LI M J, ZHANG H J, et al. Blur detection for digital images using wavelet transform[C]//2004 IEEE International Conference on Multimedia and Expo. Taipei: IEEE, 2004: 17-20.
[18] JANISZEWSKI C, MEYVIS T. Effects of brand logo complexity, repetition, and spacing on processing fluency and judgment[J]. Journal of Consumer Research, 2001, 28(1): 18-32.
[19] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
[20] CHENG H, ZWOL R, AZIMI J, et al. Multimedia features for click prediction of new ads in display advertising[C]// Procee-dings of the 18th ACM SIGKDD International Conference on Know-ledge Discovery and Data Mining. Beijing: ACM, 2012: 777-785.
[21] IBRAHEEM N A, HASAN M M, KHAN R Z, et al. Unders-tanding color models: a review[J]. ARPN Journal of Science and Technology, 2012, 2(3): 265-275.
(责任编辑:沈天琦)

更新日期/Last Update: 2025-08-30