参考文献/References:
[1] 周愿恩. 图像描述生成中的若干关键技术研究[D]. 合肥: 合肥工业大学, 2022.
[2] 李白杨, 白云, 詹希旎, 等. 人工智能生成内容(AIGC)的技术特征与形态演进[J]. 图书情报知识, 2023, 40(1): 66-74.
LI Baiyang, BAI Yun, ZHAN Xini, et al. The technical features and aromorphosis of artificial intelligence generated content(AIGC)[J]. Documentation Information and Knowledge, 2023, 40(1): 66-74.(in Chinese)
[3] ZHAN F, YU Y, WU R, et al. Multimodal image synthesis and editing: a survey[J]. arXiv,2021:13592.
[4] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[5] 施倩, 罗戎蕾. 基于生成对抗网络的服装图像生成研究进展[J]. 现代纺织技术, 2023, 31(2): 36-46.
SHI Qian, LUO Ronglei. Research progress of garment image generation based on generative adversarial network[J]. Modern Textile Technology, 2023, 31(2): 36- 46.(in Chinese)
[6] LIU K L, LI W, YANG C Y, et al. Intelligent design of multi-media content in Alibaba[J]. Frontiers of Information Technology and Electronic Engineering, 2019, 20(12): 1657-1664.
[7] 陈伟. 生成对抗网络在广告创意图制作中的应用[D]. 北京: 中国科学院大学, 2020.
[8] 杨怡然, 吴巧英. 智能化服装搭配推荐研究进展[J]. 浙江理工大学学报(自然科学版), 2021, 46(1): 1-12.
YANG Yiran, WU Qiaoying. Research progress of intelligent clothing matching recommendation[J]. Journal of Zhejiang Sci-Tech University(Natural Sciences Edition), 2021, 46(1): 1-12.(in Chinese)
[9] 杨争妍, 薛文良, 张传雄, 等. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(7): 164-168.
YANG Zhengyan, XUE Wenliang, ZHANG Chuanxiong, et al. Recommendations for user’s bottoms matching based on generative adversarial networks[J]. Journal of Textile Research, 2021, 42(7): 164-168.(in Chinese)
[10] 陈涵, 沈雷, 汪鸣明, 等. 基于生成对抗网络的书法纺织图案设计开发[J]. 丝绸, 2021, 58(2): 137-141.
CHEN Han, SHEN Lei, WANG Mingming, et al. Design and development of calligraphy textile patterns based on generative adversarial network[J]. Journal of Silk, 2021, 58(2): 137-141.(in Chinese)
[11] 曹宝秀. 用神经网络自动设计服装[J]. 中国纤检, 2019(4): 120-121.
CAO Baoxiu. An automatic garment designing by neural networks[J]. China Fiber Inspection, 2019(4): 120-121.(in Chinese)
[12] 张颖, 刘成霞. 生成对抗网络在虚拟试衣中的应用研究进展[J]. 丝绸, 2021, 58(12):63-72.
ZHANG Ying, LIU Chengxia. Research progress on the application of generative adversarial network in virtual fitting[J].Journal of Silk, 2011, 58(12): 63-72.(in Chinese)
[13] 徐小春. 深度学习算法在虚拟试衣中的应用[D]. 无锡: 江南大学, 2021.
[14] 王坤峰, 左旺孟, 谭营, 等. 生成式对抗网络: 从生成数据到创造智能[J]. 自动化学报, 2018, 44(5): 769-774.
WANG Kunfeng, ZUO Wangmeng, TAN Ying, et al. Generative adversarial networks: from generating data to creating intelligence[J]. Acta Automatica Sinica, 2018, 44(5): 769-774.(in Chinese)
[15] 雷新意, 吴陈. 一种基于BEGAN改进的残缺人脸图像修复算法[J]. 计算机与数字工程, 2023, 51(2): 484- 490.
LEI Xinxiang, WU Chen. A partial face image restoration algorithm based on BEGAN improvement [J]. Computer and Digital Engineering, 2023, 51(2): 484- 490.(in Chinese)
[16] BROWN T, MANN B, RYDER N, et al. Language models are few-shot learners[J]. Advances in neural information processing systems, 2020, 33: 1877-1901.
[17] CHEN M, RADFORD A, CHILD R, et al. Generative pretraining from pixels[C]//International conference on machine learning[S.I.]: PMLR, 2020: 1691-1703.
[18] WAN Z Y, ZHANG J B, CHEN D D, et al. High-fidelity plura-listic image completion with transformers[C]//2021 IEEE/CVF International Conference on Computer Vision.Montreal:IEEE, 2021: 4672- 4681.
[19] FENOCCHI E, MORELLI D, CORNIA M, et al. Dual-branch collaborative transformer for virtual try-on[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW). New Orleans: IEEE, 2022: 2246-2250.
[20] REN B, TANG H, MENG F Y, et al. Cloth interactive transformer for virtual try-on[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2024, 20(4): 1-20.
[21] SHI J, ZHANG Y Y, WANG W H, et al. A novel two-stream transformer-based framework for multi-modality human action recognition[J]. Applied Sciences, 2023, 13(4): 2058.
[22] XIONG Z N, WANG C X, LI Y, et al. Swin-pose: swin transformer based human pose estimation[C]//2022 IEEE 5th International Conference on Multimedia Information Processing and Retrieval(MIPR). San Francisco: IEEE, 2022: 228-233.
[23] GOENKA S, ZHENG Z H, JAISWAL A, et al. FashionVLP: vision language transformer for fashion retrieval with feedback[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans: IEEE, 2022: 14085-14095.
[24] BECATTINI F, TEOTINI F M, DEL BIMBO A. Transformer-based graph neural networks for outfit generation[J]. IEEE Transactions on Emerging Topics in Computing, 2024, 12(1): 213-223.
[25] JIANG J B, WANG T, YAN H, et al. ClothFormer: taming video virtual try-on in all module[C]//2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). New Orleans:IEEE, 2022: 10789-10798.
[26] CROITORU F A, HONDRU V, IONESCU R T, et al. Diffusion models in vision: a survey[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45(9): 10850-10869.
[27] KAWAR B, ZADA S, LANG O, et al. Imagic: text-based real image editing with diffusion models[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition(CVPR). Vancouver: IEEE, 2023: 6007-6017.
[28] XIE Y H, TAKIKAWA T, SAITO S, et al. Neural fields in visual computing and beyond[J]. Computer Graphics Forum, 2022, 41(2): 641- 676.
[29] MILDENHALL B, SRINIVASAN P P, TANCIK M, et al. NeRF: representing scenes as neural radiance fields for view synthesis[C]//Computer Vision-ECCV 2020. Cham: Springer, 2020: 405-421.
[30] ZHAN F, YU Y, WU R, et al. Multimodal image synthesis and editing: A survey[J]. arXiv,2021:13592.
[31] 邓钇敏, 张旭龙, 司世景, 等. 虚拟人形象合成技术综述[J]. 大数据, 2023, 9(3): 114-139.
DENG Yimin, ZHANG Xulong, SI Shijing, et al. Review on synthesis technology of Virtual Human image [J]. Big Data, 2023, 9(3): 114-139.(in Chinese)
[32] GUO Y D, CHEN K Y, LIANG S, et al. AD-NeRF: audio driven neural radiance fields for talking head synthesis[C]//2021 IEEE/CVF International Conference on Computer Vision(ICCV). Montreal:IEEE, 2021: 5764-5774.
[33] GAO X J, YANG J L, KIM J, et al. MPS-NeRF: generalizable 3D human rendering from multiview images[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2025, 47(8): 6110-6121.
[34] ZHAO S, CHEN D, CHEN Y C, et al. Uni-controlnet: All-in-one control to text-to-image diffusion models[J]. arXiv,2023:16322.
[35] 郑凯,王菂. 人工智能在图像生成领域的应用——以Stable Diffusion和ERNIE-ViLG为例[J]. 科技视界, 2022(35): 50-54.
ZHENG Kai, WANG Di. Application of artificial intelligence in the field of image generation: a case study of Stable Diffusion and Erney-Vilg[J]. Science and Technology Vision, 2022(35): 50-54.(in Chinese)
[36] HU E J, SHEN Y, WALLIS P, et al. Lora: Low-rank adaptation of large language models[J]. arXiv,2021:09685.
[37] 朱伟明,于家蓓.基于微调扩散模型的智能化衬衫款式图生成[J].服装学报,2025,10(3):260-267.
ZHU Weiming,YU Jiabei.Intelligent shirt style drawing generation based on fine-tuned diffusion model[J].Journal of Clothing Research,2025,10(3):260-267.(in Chinese)
[38] ZHANG M, RAO A Y, AGRAWALA M. Adding conditional control to text-to-image diffusion models[J]. arXiv,2023:05543.
[39] CAO Z, HIDALGO G, SIMON T, et al. OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(1): 172-186.
[40] MICHELUCCI U. An introduction to autoencoders[J]. arXiv.2022:03898.
(责任编辑:张 雪)