参考文献/References:
[1] ZHU S J, FAN Z, FENG B Q, et al. Review on wearable thermoelectric generators: from devices to applications[J]. Energies, 2022, 15(9): 3375.
[2] JIA Y H, JIANG Q L, SUN H D, et al. Wearable thermoelectric materials and devices for self-powered electronic systems[J]. Advanced Materials, 2021, 33(42): 2102990.
[3] SHENG F F, ZHANG B, ZHANG Y H, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967.
[4] 沈雷, 孙湉. 智能可穿戴领域研究现状和发展趋势[J]. 服装学报, 2023, 8(2): 125-133.
SHEN Lei, SUN Tian. Intelligent wearable research status and its development trend[J]. Journal of Clothing Research, 2023, 8(2): 125-133.(in Chinese)
[5] 周金利, 王 政, 周知艇, 等. 基于智能柔性织物传感器的漏尿频次监测系统研究[J]. 现代纺织技术, 2024, 32(3): 91-101.
ZHOU Jinli, WANG Zheng, ZHOU Zhiting, et al. Research on the urine leakage frequency monitoring system based on intelligent flexible fabric sensors[J]. Advanced Textile Technology, 2024, 32(3): 91-101.(in Chinese)
[6] 佘明华, 徐瑞东, 韦继超, 等.纺织基柔性触觉传感器及可穿戴应用进展[J]. 丝绸, 2023, 60(3): 60-72.
SHE Minghua, XU Ruidong, WEI Jichao, et al. Textile-based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023, 60(3): 60-72.(in Chinese)
[7] AL MAMUN M A, YUCE M R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications[J]. Advanced Functional Materials, 2020, 30(51): 2005703.
[8] WANG F, LIU S, SHU L, et al. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring[J]. Carbon, 2017, 121: 353-367.
[9] LHERITIER P, TORELL? A, USUI T, et al. Large harvested energy with non-linear pyroelectric modules[J]. Nature, 2022, 609(7928): 718-721.
[10] WANG T R, SHEN Y C, CHEN L J, et al. Large-scale production of the 3D warp knitted terry fabric triboelectric nanogenerators for motion monitoring and energy harvesting[J]. Nano Energy, 2023, 109: 108309.
[11] NIU L, PENG X, CHEN L J, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection[J]. Nano Energy, 2022, 97: 107168.
[12] WANG K, SHEN Y C, WANG T R, et al. An ultrahigh-strength braided smart yarn for wearable individual sensing and protection[J]. Advanced Fiber Materials, 2024, 6(3): 786-797.
[13] SHEN Y C, CHEN C Y, CHEN L J, et al. Mass-production of biomimetic fur knitted triboelectric fabric for smart home and healthcare[J]. Nano Energy, 2024, 125: 109510.
[14] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[15] HE X Y, SHI J, HAO Y N, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing[J]. Carbon Energy, 2022, 4(4): 621- 632.
[16] LI L, LIU W D, LIU Q F, et al. Multifunctional wearable thermoelectrics for personal thermal management[J]. Advanced Functional Materials, 2022, 32(22): 2200548.
[17] ZHANG Y Y, FAN Z, WEN N X, et al. Novel wearable pyrothermoelectric hybrid generator for solar energy harvesting[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17330-17339.
[18] SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric gene-rates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11: 572.
[19] KIM Y, LUND A, NOH H, et al. Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900749.
[20] LEE J H, LEE K Y, GUPTA M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator[J]. Advanced Materials, 2014, 26(5): 765-769.
[21] 王广华, 洪兴华, 朱子骄, 等. PEDOT:PSS/PVA涂层导电织物的制备及其性能[J]. 现代纺织技术, 2025, 33(4): 122-130.
WANG Guanghua, HONG Xinghua, ZHU Zijiao, et al. Preparation and properties of PEDOT:PSS/PVA-coated conductive fabrics[J]. Advanced Textile Technology, 2025, 33(4): 122-130.(in Chinese)
(责任编辑:沈天琦)