[1]侯锐华,宋金龙,陈超余,等.热电-摩擦电智能纱线的制备与性能[J].服装学报,2025,10(04):304-310.
 HOU Ruihua,SONG Jinlong,CHEN Chaoyu,et al.Preparation and Properties of Thermoelectric-Triboelectric Smart Yarns[J].Journal of Clothing Research,2025,10(04):304-310.
点击复制

热电-摩擦电智能纱线的制备与性能()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年04期
页码:
304-310
栏目:
智能服装
出版日期:
2025-09-13

文章信息/Info

Title:
Preparation and Properties of Thermoelectric-Triboelectric Smart Yarns
作者:
侯锐华;  宋金龙;  陈超余;  马丕波*
江南大学 纺织科学与工程学院,江苏 无锡 214122
Author(s):
HOU Ruihua;  SONG Jinlong;  CHEN Chaoyu;  MA Pibo*
College of Textile Science and Engineering,Jiangnan University,Wuxi 214122,China
分类号:
TS 106.4
文献标志码:
A
摘要:
为提高微型纳米发电机的工作效率,采用分段浸渍的方法制备一种连续性分段式热电纱线; 对热电纱线进一步编织,使其力学性能得到加强,同时具备摩擦电输出能力。对制备的热电纱线的最佳工艺条件、最佳浸渍次数和最佳编织截距进行探究,发现N型溶液中聚乙烯亚胺的最佳质量分数为6%,N型和P型纱线的最佳浸渍次数均为3次,智能纱线的最佳编织截距为1.0 mm,在该条件下可以得到一种力学性能及输出电信号良好的热电-摩擦电智能纱线,且能够直接参与工业化织机的织造。研究结果为热电发电机与摩擦纳米发电机的结合提供了一种可行的方案。
Abstract:
To improve the working efficiency of micro-nano generators, a continuous segmented thermoelectric yarn was prepared using a segmented impregnation method. The thermoelectric yarn was further knitted to enhance its mechanical properties while imparting triboelectric output capability. The optimal process parameters, impregnation cycles, and knitting spacing for the prepared thermoelectric yarn were investigated. It is found that the optimal mass fraction of polyethyleneimine in the N-type solution is 6%, the optimal number of impregnation cycles for both N-type and P-type yarns is three, and the optimal knitting spacing for the smart yarn is 1.0 mm. Under these conditions, a thermoelectric-triboelectric smart yarn with excellent mechanical properties and electrical output signals can be obtained. Moreover, it can be directly integrated into industrial weaving machines. The research results provide a feasible approach for the combination of thermoelectric generators and triboelectric nanogenerators.

参考文献/References:

[1] ZHU S J, FAN Z, FENG B Q, et al. Review on wearable thermoelectric generators: from devices to applications[J]. Energies, 2022, 15(9): 3375.
[2] JIA Y H, JIANG Q L, SUN H D, et al. Wearable thermoelectric materials and devices for self-powered electronic systems[J]. Advanced Materials, 2021, 33(42): 2102990.
[3] SHENG F F, ZHANG B, ZHANG Y H, et al. Ultrastretchable organogel/silicone fiber-helical sensors for self-powered implantable ligament strain monitoring[J]. ACS Nano, 2022, 16(7): 10958-10967.
[4] 沈雷, 孙湉. 智能可穿戴领域研究现状和发展趋势[J]. 服装学报, 2023, 8(2): 125-133.
SHEN Lei, SUN Tian. Intelligent wearable research status and its development trend[J]. Journal of Clothing Research, 2023, 8(2): 125-133.(in Chinese)
[5] 周金利, 王 政, 周知艇, 等. 基于智能柔性织物传感器的漏尿频次监测系统研究[J]. 现代纺织技术, 2024, 32(3): 91-101.
ZHOU Jinli, WANG Zheng, ZHOU Zhiting, et al. Research on the urine leakage frequency monitoring system based on intelligent flexible fabric sensors[J]. Advanced Textile Technology, 2024, 32(3): 91-101.(in Chinese)
[6] 佘明华, 徐瑞东, 韦继超, 等.纺织基柔性触觉传感器及可穿戴应用进展[J]. 丝绸, 2023, 60(3): 60-72.
SHE Minghua, XU Ruidong, WEI Jichao, et al. Textile-based flexible tactile sensors and wearable applications[J]. Journal of Silk, 2023, 60(3): 60-72.(in Chinese)
[7] AL MAMUN M A, YUCE M R. Recent progress in nanomaterial enabled chemical sensors for wearable environmental monitoring applications[J]. Advanced Functional Materials, 2020, 30(51): 2005703.
[8] WANG F, LIU S, SHU L, et al. Low-dimensional carbon based sensors and sensing network for wearable health and environmental monitoring[J]. Carbon, 2017, 121: 353-367.
[9] LHERITIER P, TORELL? A, USUI T, et al. Large harvested energy with non-linear pyroelectric modules[J]. Nature, 2022, 609(7928): 718-721.
[10] WANG T R, SHEN Y C, CHEN L J, et al. Large-scale production of the 3D warp knitted terry fabric triboelectric nanogenerators for motion monitoring and energy harvesting[J]. Nano Energy, 2023, 109: 108309.
[11] NIU L, PENG X, CHEN L J, et al. Industrial production of bionic scales knitting fabric-based triboelectric nanogenerator for outdoor rescue and human protection[J]. Nano Energy, 2022, 97: 107168.
[12] WANG K, SHEN Y C, WANG T R, et al. An ultrahigh-strength braided smart yarn for wearable individual sensing and protection[J]. Advanced Fiber Materials, 2024, 6(3): 786-797.
[13] SHEN Y C, CHEN C Y, CHEN L J, et al. Mass-production of biomimetic fur knitted triboelectric fabric for smart home and healthcare[J]. Nano Energy, 2024, 125: 109510.
[14] LU L J, DING W Q, LIU J Q, et al. Flexible PVDF based piezoelectric nanogenerators[J]. Nano Energy, 2020, 78: 105251.
[15] HE X Y, SHI J, HAO Y N, et al. Highly stretchable, durable, and breathable thermoelectric fabrics for human body energy harvesting and sensing[J]. Carbon Energy, 2022, 4(4): 621- 632.
[16] LI L, LIU W D, LIU Q F, et al. Multifunctional wearable thermoelectrics for personal thermal management[J]. Advanced Functional Materials, 2022, 32(22): 2200548.
[17] ZHANG Y Y, FAN Z, WEN N X, et al. Novel wearable pyrothermoelectric hybrid generator for solar energy harvesting[J]. ACS Applied Materials & Interfaces, 2022, 14(15): 17330-17339.
[18] SUN T T, ZHOU B Y, ZHENG Q, et al. Stretchable fabric gene-rates electric power from woven thermoelectric fibers[J]. Nature Communications, 2020, 11: 572.
[19] KIM Y, LUND A, NOH H, et al. Robust PEDOT:PSS wet-spun fibers for thermoelectric textiles[J]. Macromolecular Materials and Engineering, 2020, 305(3): 1900749.
[20] LEE J H, LEE K Y, GUPTA M K, et al. Highly stretchable piezoelectric-pyroelectric hybrid nanogenerator[J]. Advanced Materials, 2014, 26(5): 765-769.
[21] 王广华, 洪兴华, 朱子骄, 等. PEDOT:PSS/PVA涂层导电织物的制备及其性能[J]. 现代纺织技术, 2025, 33(4): 122-130.
WANG Guanghua, HONG Xinghua, ZHU Zijiao, et al. Preparation and properties of PEDOT:PSS/PVA-coated conductive fabrics[J]. Advanced Textile Technology, 2025, 33(4): 122-130.(in Chinese)
(责任编辑:沈天琦)

更新日期/Last Update: 2025-08-30