[1]李家宝,宋晓霞*.含气量对纬编空气层提花织物热湿性能的影响[J].服装学报,2025,10(04):297-303.
 LI Jiabao,SONG Xiaoxia*.Effect of Air Content on the Thermal and Moisture Properties of Weft-Knitted Air-Layered Jacquard Fabrics[J].Journal of Clothing Research,2025,10(04):297-303.
点击复制

含气量对纬编空气层提花织物热湿性能的影响()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年04期
页码:
297-303
栏目:
针织服装
出版日期:
2025-09-13

文章信息/Info

Title:
Effect of Air Content on the Thermal and Moisture Properties of Weft-Knitted Air-Layered Jacquard Fabrics
作者:
李家宝;  宋晓霞*
上海工程技术大学 纺织服装学院,上海 201620
Author(s):
LI Jiabao;  SONG Xiaoxia*
School of Textile and Clothing,Shanghai University of Engineering Science,Shanghai 201620,China
分类号:
TS 186.2
文献标志码:
A
摘要:
选用羊毛腈纶混纺纱线为原料,对鸟羽中的羽枝结构进行仿生,利用STOLL电脑横机开发出10种空气层提花试样,对试样的含气量、保暖性、透气性、吸湿性以及透湿性进行测试分析,研究含气量对其性能的影响。结果表明:当含气量处于适中至较高范围时,织物的保暖性随含气量的增加而增强; 透气性受织物厚度和含气量的综合影响,且随含气量变化呈现出不同趋势; 织物在含气量最低时吸湿性最佳; 随着含气量增加,回潮率先下降,随后趋于稳定; 透湿性随含气量的增加而增强。含气量对织物保暖、透气和吸湿性能的影响具有阶段性特征,当含气量达到特定阈值时,其影响趋势就会发生改变。
Abstract:
To investigate the effect of air content on the thermal and moisture properties of weft-knitted air-layer jacquard fabrics, wool-acrylic blended yarns were selected as raw materials. Ten air-layer jacquard fabric samples were developed using a STOLL computerized flat knitting machine, inspired by the twig structure of bird feathers. The samples were tested and analyzed for air content, thermal insulation, air permeability, moisture absorption, and moisture permeability. The results showed that when air content was within a moderate to high range, thermal insulation improved with increasing air content. Air permeability was influenced by both fabric thickness and air content, exhibiting different trends with varying air content. The best moisture absorption was achieved at the lowest air content, with moisture regain initially decreasing and then stabilizing as air content increased. Moisture permeability was improved as air content increased. The influence of air content on thermal insulation, air permeability, and moisture absorption exhibited a phased characteristic, with trend changes occurring when a specific threshold was reached.

参考文献/References:

[1] 赵藏, 黄林初. 双针床电脑横机全成形常用花型开发[J]. 针织工业, 2024(5): 11-15.
ZHAO Cang, HUANG Linchu. Development of common patterns for integral garments on double needle bed computerized flat knitting machine[J]. Knitting Industries, 2024(5): 11-15.(in Chinese)
[2] 顾文洁, 顾振刚. 电脑横机成形编织技术及产品发展趋势[J]. 针织工业, 2019(4): 15-19.
GU Wenjie, GU Zhengang. Integral knitting technology and development trend of its products computerized flat knitting machine[J]. Knitting Industries, 2019(4): 15-19.(in Chinese)
[3] PENG J J, JIANG G M, CONG H L, et al. Development of whole garment formed on four-bed computerized flat knitting machine[J]. International Journal of Clothing Science and Technology, 2018, 30(3): 320-331.
[4] 孙江龙, 俞旭良, 顾洪阳, 等. 抗菌防晒纬编面料开发与性能研究[J]. 丝绸, 2025, 62(5): 45-52.
SUN Jianglong, YU Xuliang, GU Hongyang, et al. Research on the development and performance of weft-knitted antibacterial sunscreen fabrics[J]. Journal of Silk, 2025, 62(5): 45-52.(in Chinese)
[5] 胡蝶飞, 王琰, 姚菊明, 等. 纸纱∕再生涤复合纱及其针织面料的性能[J]. 现代纺织技术, 2023, 31(2): 152-158.
HU Diefei, WANG Yan, YAO Juming, et al. Properties of paper yarn/recycled polyester composite yarn and its knitted fabric[J]. Advanced Textile Technology, 2023, 31(2): 152-158.(in Chinese)
[6] 金子敏, 余乐, 陈锟, 等. 玻尿酸黏胶纤维春夏用无缝针织物的舒适性能评价[J]. 服装学报, 2022, 7(5): 377-384.
JIN Zimin, YU Le, CHEN Kun, et al. Comfort evaluation of seamless knitted fabrics with hyaluronic acid viscose fibers for spring and summer[J]. Journal of Clothing Research, 2022, 7(5): 377-384.(in Chinese)
[7] 刘梦婕,路丽莎,江学为,等.基于仿生学的横编保暖面料开发与性能评价[J].丝绸,2025,62(2):29-35.
LIU Mengjie, LU Lisha, JIANG Xuewei, et al. Development and performance evaluation of transversely woven thermal fabrics based on bionics[J]. Journal of Silk, 2025, 62(2):29-35.(in Chinese)
[8] 陈红娟. 针织提花面料凹凸肌理效果设计与工艺[J]. 毛纺科技, 2019, 47(3): 9-13.
CHEN Hongjuan. Design and manufacture of pique effect in flat-knit jacquard fabric[J]. Wool Textile Journal, 2019, 47(3): 9-13.(in Chinese)
[9] 李婷玥. 空气层组织在针织成型服装中的创新设计研究[D]. 北京: 北京服装学院, 2022: 5-18.
[10] 赵超, 杨彩云. 涤棉股线电脑横机针织物的导热性能[J]. 山东纺织科技, 2015, 56(4): 7-10.
ZHAO Chao, YANG Caiyun. Thermal performance of polyester/cotton thread knitted fabric[J]. Shandong Textile Science and Technology, 2015, 56(4): 7-10.(in Chinese)
[11] 宋兰霞, 陈昀. 织物结构密度对织物导热性能影响的研究[J]. 中国纤检, 2005(3): 24-27.
SONG Lanxia, CHEN Yun. Study on the influence of fabric structure density on thermal conductivity of fabric[J]. China Fiber Inspection, 2005(3): 24-27.(in Chinese)
[12] FRACKIEWICZ-KACZMAREK J, PSIKUTA A, BUENO M A, et al. Air gap thickness and contact area in undershirts with various moisture contents: influence of garment fit, fabric structure and fiber composition[J]. Textile Research Journal, 2015, 85(20): 2196-2207.
[13] 张旭靖, 王立川, 陈雁. 针织内衣织物接触冷暖感的形成机制与影响因素[J]. 纺织学报, 2017, 38(1): 57- 60.
ZHANG Xujing, WANG Lichuan, CHEN Yan. Formation mechanism and influence factors of warm-cool feeling of knitted underwear fabrics[J]. Journal of Textile Research, 2017, 38(1): 57- 60.(in Chinese)
[14] 张露杨, 宋海波, 孟晶, 等. 不同使用环境下被服系统的动态热湿舒适性[J]. 现代纺织技术, 2024, 32(5): 97-104.
ZHANG Luyang, SONG Haibo, MENG Jing, et al. Dynamic thermal and moisture comfort of the bedding system in different conditions[J]. Advanced Textile Technology, 2024, 32(5): 97-104.(in Chinese)
[15] 万爱兰, 王晓晓, 洪赵. 棉经编五明治衬衫面料的开发与单向导湿性能[J]. 服装学报, 2024, 9(3): 215-222.
WAN Ailan, WANG Xiaoxiao, HONG Zhao. Development and unidirectional moisture conductivity of warp-knitted five-layer sandwich cotton shirt fabrics[J]. Journal of Clothing Research, 2024, 9(3): 215-222.(in Chinese)
[16] 李慧, 宋晓霞. 吸湿排汗针织面料设计及热湿舒适性评价[J]. 服装学报, 2022, 7(3): 196-201, 208.
LI Hui, SONG Xiaoxia. Design of moisture-wicking fabric and thermal and moisture comfort evaluation[J]. Journal of Clothing Research, 2022, 7(3): 196-201, 208.(in Chinese)
[17] 周长年, 吴鹏飞. 仿生智能温控纤维及织物的研究进展[J]. 纺织导报, 2022(5): 57-60.
ZHOU Changnian, WU Pengfei. Advances in intelligent temperature-controlled biomimetic fibers and fabrics[J]. China Textile Leader, 2022(5): 57- 60.(in Chinese)
[18] 王建萍, 苗明珠, 沈德垚, 等. 仿生鸟羽结构针织面料开发与性能评价[J]. 纺织学报, 2022, 43(4): 55-61.
WANG Jianping, MIAO Mingzhu, SHEN Deyao, et al. Development and performance evaluation of knitted fabric with bionic bird feather structure[J]. Journal of Textile Research, 2022, 43(4): 55- 61.(in Chinese)
[19] METWALLY S, MARTíNEZ COMESAA S, ZARZYKA M, et al. Thermal insulation design bioinspired by microstructure study of penguin feather and polar bear hair[J]. Acta Biomaterialia, 2019, 91: 270-283.
[20] 纺织工业部标准化研究所.纺织品保温性能试验方法:GB/T 11048—1989[S].北京:中国标准出版社,1989.
[21] 中国纺织总会标准化研究所.纺织品 织物透气性的测定:GB/T 5453—1997[S].北京:中国标准出版社,1997.
[22] 中国纺织总会标准化研究所.纺织材料含水率和回潮率的测定 烘箱干燥法:GB/T 9995—1997[S].北京:中国标准出版社,1997.
[23] 全国纺织品标准化技术委员会基础标准分会(SAC/TC 209/SC 1).纺织品 织物透湿性试验方法 第2部分:蒸发法:GB/T 12704.2-2009[S].北京:中国标准出版社,2009.
[24] 王莉, 张冰洁, 王建萍, 等. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(5): 66-72, 89.
WANG Li, ZHANG Bingjie, WANG Jianping, et al. Development and performance evaluation of bionic knitted winter sports fabrics[J]. Journal of Textile Research, 2021, 42(5): 66-72, 89.(in Chinese)
(责任编辑:卢 杰)

更新日期/Last Update: 2025-08-30