[1]周 文,蒋 鑫,朱豆豆,等.基于静电纺丝技术的单向导湿微纳米纤维非织造材料研究进展[J].服装学报,2025,10(04):289-296.
 ZHOU Wen,JIANG Xin,ZHU Doudou,et al.Research Progress of Micro-Nano Fibrous Nonwoven Materials with Unidirectional Water Transport Based on Electrospinning Technology[J].Journal of Clothing Research,2025,10(04):289-296.
点击复制

基于静电纺丝技术的单向导湿微纳米纤维非织造材料研究进展()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年04期
页码:
289-296
栏目:
服装材料
出版日期:
2025-09-13

文章信息/Info

Title:
Research Progress of Micro-Nano Fibrous Nonwoven Materials with Unidirectional Water Transport Based on Electrospinning Technology
作者:
周 文1;  蒋 鑫1;  朱豆豆1;  孙静怡1;  缪东洋2; 3;  张继超1;  付少海*1
1.江南大学 纺织科学与工程学院,江苏 无锡 214122; 2.南京林业大学 化学工程学院,江苏 南京 210037; 3.南京林业大学 江苏省林业资源高效加工利用协同创新中心,江苏 南京 210037
Author(s):
ZHOU Wen1;  JIANG Xin1;  ZHU Doudou1;  SUN Jingyi1; MIAO Dongyang2; 3;  ZHANG Jichao1;  FU Shaohai*1
1. College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China; 2. College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; 3.Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
分类号:
TS 174.1
文献标志码:
A
摘要:
微纳米纤维非织造材料具有孔径、厚度、润湿性可调控等特点,在单向导湿领域具有广阔的应用前景。从差动毛细效应和不对称润湿性等方面简述微纳米纤维非织造材料的单向导湿机制,归纳了采用静电纺丝技术制备不对称结构微纳米纤维非织造材料的方法,分析了单向导湿微纳米纤维非织造材料在功能服装、医用敷料等领域的应用潜力。研究认为,需进一步拓宽微纳米纤维非织造材料在多功能集成设计方面的研究领域,推动单向导湿非织造材料向高效环保、耐用及多功能集成方向发展,以符合其在特定温湿度或大量排汗环境中的应用要求,提升人体舒适性。
Abstract:
Micro-nano fibrous nonwoven materials have characteristics such as customizable pore size, thickness, and wettability, showing extensive application prospects in the field of unidirectional water transport. This study briefly described the unidirectional water transport mechanism of micro-nano fibrous nonwoven materials from the aspects of the differential capillary effect and asymmetric wettability. It summarized methods for preparing micro-nano fibrous nonwoven materials with asymmetric structures using electrospinning technology. Furthermore, the study analyzed the application potential of unidirectional water transport micro-nano fibrous nonwoven materials in functional clothing, medical dressings, and other fields. The research concludes that it is necessary to further expand the research scope on micro-nano fibrous nonwoven materials in multi-functional integrated design. This will promote the development of unidirectional water transport nonwoven materials towards high-efficiency and environmentally friendly, durable, and multi-functional integrated directions. This advancement aims to meet application requirements in specific temperature and humidity conditions or profuse sweating environments, thereby enhancing human comfort.

参考文献/References:

[1] FAN Z Z, WANG Y, ZHAO W N, et al. Unidirectional water transport fabric with nanoscale hydrophilic/hydrophobic pattern for personal moisture and thermal management[J]. Chemical Engineering Journal, 2024, 480: 148204.
[2] ZHENG R Q, WANG M J, JIANG M M, et al. Dynamic spectral metafabric with unidirectional moisture transport property for personal thermal management[J]. ACS Applied Materials and Interfaces, 2024, 16(28): 36973-36982.
[3] LUO H, YANG J Y, XIANG Z, et al. Functional electrospinning Janus dressings with asymmetric surface wettability[J]. Applied Materials Today, 2024, 41: 102445.
[4] LIU J Z, CHENG H J, YUAN X N, et al. Amphipathic medical composite cotton gauze with unidirectional drainage and anti-adhesion properties for wound healing[J]. Cellulose, 2024, 31(12): 7613-7627.
[5] 李亚萍. 多层仿生机织物的结构与导湿机理及太阳能界面蒸发应用[D]. 天津: 天津工业大学, 2022.
[6] 熊路, 石磊, 王闻宇, 等. 基于润湿性梯度设计的单向导水/油多孔材料研究进展[J]. 化工进展, 2022, 41(5): 2526-2536.
XIONG Lu, SHI Lei, WANG Wenyu, et al. Progress in unidirectional water/oil transport porous materials based on design of wettability gradient[J]. Chemical Industry and Engineering Progress, 2022, 41(5): 2526-2536.(in Chinese)
[7] 吴万桦, 钱晓明, 唐孝颜, 等. 熔体纺丝异形化纤维及其非织造材料的应用研究进展[J]. 现代纺织技术, 2025, 33(2): 10-22.
WU Wanhua, QIAN Xiaoming, TANG Xiaoyan, et al. Research progress on the application of melt spinning profiled fibers and nonwoven materials[J]. Advanced Textile Technology, 2025, 33(2): 10-22.(in Chinese)
[8] 王洪杰, 胡忠文, 王赫, 等. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
WANG Hongjie, HU Zhongwen, WANG He, et al. Research progress in one-way water transport textiles and their applications[J]. Journal of Textile Research, 2022, 43(11): 195-202.(in Chinese)
[9] AGARWAL S, GREINER A, WENDORFF J H. Functional materials by electrospinning of polymers[J]. Progress in Polymer Science, 2013, 38(6): 963-991.
[10] 于丹妮, 杨雪. 单向导湿纺织品的研究现状与应用[J]. 毛纺科技, 2024, 52(11): 133-138.
YU Danni, YANG Xue. Research status and application of unidirectional water-transport textiles[J]. Wool Textile Journal, 2024, 52(11): 133-138.(in Chinese)
[11] 朱豆豆, 付少海, 张继超. 基于静电纺丝技术的防水透湿微纳米纤维膜研究进展[J]. 服装学报, 2023, 8(2): 95-101.
ZHU Doudou, FU Shaohai, ZHANG Jichao. Research progress on waterproof and moisture permeable micro-nanofibrous membranes based on electrospinning technology[J]. Journal of Clothing Research, 2023, 8(2): 95-101.(in Chinese)[12] 张赛, 董硕, 董东东, 等. 单向导湿抗菌敷料的制备及性能研究[J]. 棉纺织技术, 2024, 52(9): 34- 40.
ZHANG Sai, DONG Shuo, DONG Dongdong, et al. Preparation and property study of antibacterial dressings with unidirectional moisture transmissibility[J]. Cotton Textile Technology, 2024, 52(9): 34- 40.(in Chinese)
[13] LI Z J, REN J L, SUN H L, et al. Achieving the dual regulation of microstructure and microdefects in lithium rich materials by electrospinning technology[J]. Applied Surface Science, 2024, 678: 161063.
[14] DONG Y L, KONG J H, MU C Z, et al. Materials design towards sport textiles with low-friction and moisture-wicking dual functions[J]. Materials and Design, 2015, 88: 82-87.
[15] KAMIREDDI D, STREET R M, SCHAUER C L. Electrospun nanoyarns: a comprehensive review of manufacturing methods and applications[J]. Polymer Engineering and Science, 2023, 63(3): 677- 690.
[16] 张月萱, 刘亚, 庄旭品, 等. 吸湿速干材料的研究进展[J]. 现代纺织技术, 2024, 32(4): 114-124.
ZHANG Yuexuan, LIU Ya, ZHUANG Xupin, et al. Research progress in moisture-absorbing and quick-drying materials[J]. Advanced Textile Technology, 2024, 32(4): 114-124.(in Chinese)
[17] 李振, 鄢友娟, 吴爽, 等. 单向导湿面料的研究现状与进展[J]. 山东纺织科技, 2021, 62(3): 53-56.
LI Zhen, YAN Youjuan, WU Shuang, et al. Research status and development of unidirectional water-transfer fabrics[J]. Shandong Textile Science and Technology, 2021, 62(3): 53-56.(in Chinese)
[18] WANG X F, HUANG Z P, MIAO D Y, et al. Biomimetic fibrous murray membranes with ultrafast water transport and evaporation for smart moisture-wicking fabrics[J]. ACS Nano, 2019, 13(2): 1060-1070.
[19] ZHAO Y, WANG H X, ZHOU H, et al. Porous materials: directional fluid transport in thin porous materials and its functional applications[J]. Small, 2017, 13(4): 201770020.
[20] CHEN F J, LIU X, HUANG S. Asymmetric wettability Janus mesh via electrostatic printing for selective oil-water and emulsion separation[J]. Langmuir, 2024, 40(20): 10676-10684.
[21] GHALAVAND B, KOOHMAREH G A, HOMAYOONFAL M. Achieving superior Laplace pressure in electrospun PVDF/PAN Janus membranes: a morphological approach[J]. Separation and Purification Technology, 2025, 354: 129116.
[22] SONG Y, LEE S. Trilayered textile systems with asymmetric wettability and pore structure for directional water transport. Part I: fabrication and characterization of bilayered nanofibrous membrane systems[J]. Fibers and Polymers, 2023, 24(11): 4061- 4071.
[23] HAN H N, SHEN Q, WU W L, et al. A wettability and structure gradient electrospun membrane for highly efficient emulsion separation[J]. Separation and Purification Technology, 2024, 342: 127047.
[24] DONG Y L, KONG J H, PHUA S L, et al. Tailoring surface hydrophilicity of porous electrospun nanofibers to enhance capillary and push-pull effects for moisture wicking[J]. ACS Applied Materials and Interfaces, 2014, 6(16): 14087-14095.
[25] 徐海南. 静电纺纳米纤维膜制备与防水透湿性能研究[D]. 呼和浩特: 内蒙古工业大学, 2023.
[26] MIAO D Y, WANG X F, YU J Y, et al. A biomimetic transpiration textile for highly efficient personal drying and cooling[J]. Advanced Functional Materials, 2021, 31(14): 2008705.
[27] DAI B, LI K, SHI L X, et al. Bioinspired Janus textile with conical micropores for human body moisture and thermal management[J]. Advanced Materials, 2019, 31(41): 1904113.
[28] 周鉴澄, 林骏, 赵小敏, 等. 静电纺丝法制备定向导液复合纤维材料的研究进展[J]. 材料导报, 2023, 37(16): 276-282.
ZHOU Jiancheng, LIN Jun, ZHAO Xiaomin, et al. Research progress on directional moisture penetration composites prepared via electrospinning[J]. Materials Reports, 2023, 37(16): 276-282.(in Chinese)
[29] WU J, WANG N, WANG L, et al. Unidirectional water-penetration composite fibrous film via electrospinning[J]. Soft Matter, 2012, 8(22): 5996-5999.
[30] QIAN S T, WANG J, LIU Z M, et al. Secretory fluid-aggregated Janus electrospun short fiber scaffold for wound healing[J]. Small, 2022, 18(36): 2200799.
[31] MIAO D Y, HUANG Z, WANG X F, et al. Continuous, spontaneous, and directional water transport in the trilayered fibrous membranes for functional moisture wicking textiles[J]. Small, 2018, 14(32): 1801527.
[32] LI F R, WANG S, WANG Z R, et al. Fouling-proof cooling(FP-cool)fabric hybrid with enhanced sweat-elimination and heat-dissipation for personal thermal regulation[J]. Advanced Functional Materials, 2023, 33(4): 2210769.
[33] LAO L, SHOU D, WU Y S, et al. "Skin-like" fabric for personal moisture management[J]. Science Advances, 2020, 6(14): eaaz0013.
[34] SHEN Q, JIANG Y, GUO S Z, et al. One-step electrospinning membranes with gradual-transition wettability gradient for direc-tional fluid transport[J]. Journal of Membrane Science, 2022, 644: 120091.
[35] PENG Y C, ZHOU J W, YANG Y F, et al. An integrated 3D hydrophilicity/hydrophobicity design for artificial sweating skin(i-TRANS)mimicking human body perspiration[J]. Advanced Materials, 2022, 34(44): 2204168.
[36] 王洪杰, 胡忠文, 王赫, 等. 单向导湿纺织品及其应用的研究进展[J]. 纺织学报, 2022, 43(11): 195-202.
WANG Hongjie, HU Zhongwen, WANG He, et al. Research progress in one-way water transport textiles and their applications[J]. Journal of Textile Research, 2022, 43(11): 195-202.(in Chinese)
[37] DONG Y L, KONG J H, MU C Z, et al. Materials design towards sport textiles with low-friction and moisture-wicking dual functions[J]. Materials and Design, 2015, 88: 82-87.
[38] PEREIRA R F, BáRTOLO P J. Traditional therapies for skin wound healing[J]. Advances in Wound Care, 2016, 5(5): 208-229.
[39] 管彤, 张锋. 生物活性丝素蛋白敷料在创面修复中的研究进展[J]. 丝绸, 2023, 60(2): 35-41.
GUAN Tong, ZHANG Feng. Bioactive silk protein dressings in wound repair[J]. Journal of Silk, 2023, 60(2): 35-41.(in Chinese)
[40] 耿欢. 用于伤口敷料的纳米纤维膜的设计制备及应用研究[D]. 北京: 北京化工大学, 2017.
[41] 欧康康, 祁琳雅, 侯怡君, 等. 纳米纤维基单向导湿抗菌敷料的制备及其性能[J]. 纺织学报, 2022, 43(6): 49-56.
OU Kangkang, QI Linya, HOU Yijun, et al. Preparation and properties of nanofiber-based unidirectional water-transport antibacterial wound dressings[J]. Journal of Textile Research, 2022, 43(6): 49-56.(in Chinese)
[42] 李晓强, 孙倩, 秦晓雨, 等. 基于聚苯胺/聚丙烯腈纳米纤维膜的柔性空气电池阴极[J].服装学报, 2020, 5(2): 95-100.
LI Xiaoqiang, SUN Qian, QIN Xiaoyu, et al. Polyaniline/polyacrylonitrile nanofibrous membrane based flexible air-battery cathode[J]. Journal of Clothing Research, 2020, 5(2): 95-100.(in Chinese)
[43] 欧康康, 侯怡君, 吴俊妍, 等. 单向导湿纳米纤维光热膜的制备及废水处理[J]. 印染, 2021, 47(9): 15-18, 54.
OU Kangkang, HOU Yijun, WU Junyan, et al. Preparation of one-way transport nano fiber photothermal membrane and its wastewater treatment[J]. China Dyeing and Finishing, 2021, 47(9): 15-18, 54.(in Chinese)
[44] 李坤. 静电纺丝法制备PVDF-PDMS纳米纤维复合膜及其油水分离性能[D]. 长春: 长春工业大学, 2022.
[45] 杨玉艳. 具有单向导湿和热传导功能的多层结构空气过滤纤维膜的制备与性能研究[D]. 青岛: 青岛大学, 2020.
[46] CHEN J W, RAO Y Y, ZHU X, et al. Electrospun nanofibrous membranes with asymmetric wettability for unidirectional moisture transport, efficient PM capture and bacteria inhibition[J]. Journal of Membrane Science, 2022, 662: 121006.
(责任编辑:沈天琦)

相似文献/References:

[1]万爱兰,王晓晓,洪 赵.棉经编五明治衬衫面料的开发与单向导湿性能[J].服装学报,2024,9(03):215.
 WAN Ailan,WANG Xiaoxiao,HONG Zhao.Development and Unidirectional Moisture Conductivity of Warp-Knitted Five-Layer Sandwich Cotton Shirt Fabrics[J].Journal of Clothing Research,2024,9(04):215.

更新日期/Last Update: 2025-08-30