[1]曹子涵,巫 瑛,王司宇,等.漆酶催化阿魏酸对修复羊毛毡缩损伤的影响[J].服装学报,2024,9(06):471-477.
 CAO Zihan,WU Ying,WANG Siyu,et al.Effect of Laccase-Catalyzed Ferulic Acid on Repairing Felting Shrinkage Damage of Wool[J].Journal of Clothing Research,2024,9(06):471-477.
点击复制

漆酶催化阿魏酸对修复羊毛毡缩损伤的影响()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年06期
页码:
471-477
栏目:
服装材料
出版日期:
2025-01-01

文章信息/Info

Title:
Effect of Laccase-Catalyzed Ferulic Acid on Repairing Felting Shrinkage Damage of Wool
作者:
曹子涵;  巫 瑛;  王司宇;  苏 静;  王鸿博*
江南大学 纺织科学与工程学院,江苏 无锡 214122
Author(s):
CAO Zihan;  WU Ying;  WANG Siyu;  SU Jing;  WANG Hongbo*
College of Textile Science and Engineering,Jiangnan University,Wuxi 214122,China
分类号:
TS 131.8
文献标志码:
A
摘要:
为解决羊毛织物防毡缩处理后力学性能受损的问题,使用L-半胱氨酸改善羊毛的防毡缩性能,并采用漆酶催化阿魏酸交联羊毛织物,探讨L-半胱氨酸预处理及酶法交联改性处理对织物强力的修复机理。结果表明:采用L-半胱氨酸处理后羊毛织物的毡缩率由原先的18.67%降低至6.84%,但断裂强力经向损失34.77%,纬向损失32.81%,断裂伸长率经向提升13.18%,纬向提升19.88%; 使用漆酶催化阿魏酸交联羊毛织物后,断裂强力经向修复14.21%,纬向修复13.54%,织物毡缩率下降至6.49%,满足面料的防毡缩要求,且断裂强力得到有效修复,实现了羊毛的酶法低损伤防毡缩整理。
Abstract:
In order to solve the problem of mechanical property damage of wool fabrics after anti-felting shrinkage treatment, L-cysteine was used to improve the anti-felting shrinkage performance of wool, and laccase-catalyzed cross-linking of ferulic acid was used to cross-link wool fabrics, to investigate the restoration mechanism of the strength of the fabrics by L-cysteine pre-treatment and enzymatic cross-linking modification treatment.The results show that the felting shrinkage rate of wool fabric treated with L-cysteine decreased from 18.67% to 6.84%, but the loss of breaking strength is 34.77% in the warp direction and 32.81% in the weft direction, and the increase of breaking elongation is 13.18% in the warp direction and 19.88% in the weft direction. After cross-linking wool fabrics with laccase-catalyzed ferulic acid, the breaking strength is repaired by 14.21% in the warp direction and 13.54% in the weft direction, and the felting shrinkage rate is 6.49%, which meet fabrics’ anti-felting shrinkage requirements, and the breaking strength is repaired effectively, realizing the enzymatic low-damage anti-felting shrinkage treatment of wool.

参考文献/References:

[1] 余佳文,丁艳然,张佩华,等.基于正交实验优选涤纶/羊毛针织物吸湿速干性的工艺参数[J].服装学报,2023,8(3):223-228.
YU Jiawen,DING Yanran,ZHANG Peihua,et al.Optimization of process parameters for moisture absorption and quick drying of polyester/wool knitted fabrics by ortho-gonal test[J].Journal of Clothing Research,2023,8(3):223-228.(in Chinese)
[2] 沈之懿. 羊毛织物生物酶/等离子体处理比较及羊毛复合织物洗后性能研究[D]. 上海: 东华大学, 2022.
[3] 沈玉如, 朱若英, 许恩慧, 等. 羊毛生态防缩新技术探索与研究[J]. 针织工业, 2022(10): 28-32.
SHEN Yuru, ZHU Ruoying, XU Enhui, et al. Exploration and research of new ecological wool fiber anti-felting technology[J]. Knitting Industries, 2022(10): 28-32.(in Chinese)
[4] 陈菡冰, 占镠祥, 王高军, 等. 不同防缩处理对精纺毛织物手感的影响[J]. 毛纺科技, 2020, 48(11): 33-36.
CHEN Hanbing, ZHAN Liuxiang, WANG Gaojun, et al. Effect of different anti-felting process on characters of worsted fabrics[J]. Wool Textile Journal, 2020, 48(11): 33-36.(in Chinese)
[5] RANI S, KADAM V, ROSE N M, et al. Wheat starch, gum Arabic and chitosan biopolymer treatment of wool fabric for improved shrink resistance finishing[J]. International Journal of Biological Macromolecules, 2020, 163: 1044-1052.
[6] 姚科廷, 刘颖, 王强, 等. 基于菠萝蛋白酶的羊毛生物酶法防毡缩整理[J]. 丝绸, 2024, 61(10): 79-87.
YAO Keting, LIU Ying, WANG Qiang, et al. Bio-enzymatic anti-felting finishing of wool based on bromelain[J]. Journal of Silk, 2024, 61(10): 79-87.(in Chinese)
[7] 常雪宁, 何海波, 王依辰, 等. 羊毛角蛋白融合型丝素蛋白膜材料的性能分析[J]. 丝绸, 2023, 60(12): 28-35.
CHANG Xuening, HE Haibo, WANG Yichen, et al. Performance analysis of fibroin membrane materials mixed with wool keratin[J]. Journal of Silk, 2023, 60(12): 28-35.(in Chinese)
[8] 李佳颖, 沈艳琴, 武海良, 等. L-半胱氨酸/蛋白酶对羊毛防缩整理效果研究[J]. 针织工业, 2023(2): 40- 45.
LI Jiaying, SHEN Yanqin, WU Hailiang, et al. Study on the effect of L-cysteine/protease on wool shrink-proof finishing[J]. Knitting Industries, 2023(2): 40- 45.(in Chinese)
[9] 赵浦岐, 徐鹏, 张星, 等. 聚多巴胺/蛋白酶对羊毛防缩性能的影响[J]. 上海纺织科技, 2023, 51(8): 39- 42.
ZHAO Puqi, XU Peng, ZHANG Xing, et al. Effect of polydopamine/protease on the anti-shrinkage properties of wool[J]. Shanghai Textile Science and Technology, 2023, 51(8): 39- 42.(in Chinese)
[10] MEI J X, ZHANG N, YU Y Y, et al. A novel "trifunctional protease" with reducibility, hydrolysis, and localization used for wool anti-felting treatment[J]. Applied Microbiology and Biotechnology, 2018, 102(21): 9159-9170.
[11] 飞中琳, 王炜, 俞丹. 基于点击化学的羊毛耐久防毡缩抗起毛起球整理[J]. 印染, 2017, 43(19): 1-5, 10.
FEI Zhonglin, WANG Wei, YU Dan. Durable antifelting and antipilling finishing of wool fabrics based on click chemistry[J]. Dyeing and Finishing, 2017, 43(19): 1-5, 10.(in Chinese)
[12] 骆坚城, 栾文辉, 余圆圆, 等. 基于角蛋白酶-蛋白酶协同增效的酶法羊毛防缩加工[J]. 毛纺科技, 2023, 51(9): 43-50.
LUO Jiancheng, LUAN Wenhui, YU Yuanyuan, et al. Enzymatic anti-felting processing of wool based on keratin-protease synergism[J]. Wool Textile Journal, 2023, 51(9): 43-50.(in Chinese)
[13] International Organization for Standardization.Textiles-domestic washing and drying procedures for textile testing: ISO 6330—2021[S]. Geneva: International Organization for Standardization, 2021.
[14] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 织物拉伸性能 第1部分:断裂强力和断裂伸长率的测定: GB/T 3923.1—2013[S]. 北京: 中国标准出版社, 2014.
[15] 国家技术监督局. 纺织品 织物透气性的测定: GB/T 5453—1997[S]. 北京: 中国标准出版社, 1997.
[16] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 织物透湿性试验方法 第2部分:蒸发法: GB/T 12704.2—2009[S]. 北京: 中国标准出版社, 2010.
[17] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 羊毛 在碱中溶解度的测定: GB/T 7571—2008[S]. 北京: 中国标准出版社, 2008.
[18] HASSAN M M, CARR C M. A review of the sustainable methods in imparting shrink resistance to wool fabrics[J]. Journal of Advanced Research, 2019, 18: 39- 60.
[19] JIA W N, WANG Q, FAN X, et al. Laccase-mediated dye-free coloration of wool fabric[J]. Indian Journal of Fibre and Textile Research, 2018, 43: 224-230.
[20] 李洁. 漆酶催化酚类化合物对羊毛性能的改善研究[D]. 无锡: 江南大学, 2022.
[21] 孙莎莎. 酶促酚类化合物聚合及其对纺织品的功能改性和染色[D]. 苏州: 苏州大学, 2013.
[22] 陈秋霖, 朱秋昱, 周芳雨,等. 生物酶辅助提取橘皮色素及其对羊绒染色的性能[J]. 现代纺织技术, 2024, 32(3): 73-80.
CHEN Qiulin, ZHU Qiuyu, ZHOU Fangyu,et al. Bio-enzyme-assisted extraction of orange peel pigments and their cashmere dyeing properties[J]. Advanced Textile Technology, 2024, 32(3): 73-80.(in Chinese)
[23] 韦春花, 张弛, 易敏, 等. 漆酶-TEMPO生物工艺对羊毛织物表面改性的研究[J]. 嘉兴学院学报, 2022, 34(6): 48-53.
WEI Chunhua, ZHANG Chi, YI Min, et al. A study on surface modification of wool fabric by the laccase-TEMPO bio-process[J]. Journal of Jiaxing University, 2022, 34(6): 48-53.(in Chinese)
[24] ADELAKUN O E, KUDANGA T, PARKER A, et al. Laccase-catalyzed dimerization of ferulic acid amplifies antioxidant activity[J]. Journal of Molecular Catalysis B: Enzymatic, 2012, 74(1/2): 29-35.
[25] HECK T, FACCIO G, RICHTER M, et al. Enzyme-catalyzed protein crosslinking[J]. Applied Microbiology and Biotechnology, 2013, 97(2): 461- 475.
[26] SEBASTIAN S, SUNDARAGANESAN N, MANOHARAN S. Molecular structure, spectroscopic studies and first-order molecular hyperpolarizabilities of ferulic acid by density functional study[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2009, 74(2): 312-323.
[27] HASSAN M M, SCHIERMEISTER L, STAIGER M P. Sustainable production of carbon fiber: effect of cross-linking in wool fiber on carbon yields and morphologies of derived carbon fiber[J]. ACS Sustainable Chemistry and Engineering, 2015, 3(11): 2660-2668.
(责任编辑:沈天琦)

更新日期/Last Update: 2024-12-30