[1]李 玲,刘庆生*,李大伟,等.三维非织造材料基压阻式传感器的制备与性能[J].服装学报,2023,8(06):502-507.
 LI Ling,LIU Qingsheng*,LI Dawei,et al.Preparation and Performance of Piezoresistive Sensors Based on Three-Dimensional Nonwovens[J].Journal of Clothing Research,2023,8(06):502-507.
点击复制

三维非织造材料基压阻式传感器的制备与性能()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第8卷
期数:
2023年06期
页码:
502-507
栏目:
智能服装
出版日期:
2023-12-31

文章信息/Info

Title:
Preparation and Performance of Piezoresistive Sensors Based on Three-Dimensional Nonwovens
作者:
李 玲;  刘庆生*;  李大伟;  李昊轩;  邓炳耀
江南大学 生态纺织教育部重点实验室,江苏 无锡 214122
Author(s):
LI Ling;  LIU Qingsheng*;  LI Dawei;  LI Haoxuan;  DENG Bingyao
Key Laboratory of Eco-Textiles,Ministry of Education, Jiangnan University, Wuxi 214122, China
分类号:
TP 212.1
文献标志码:
A
摘要:
以聚乙酸乙烯酯(PVAc)为分散剂和黏合剂,将碳纳米管(CNT)均匀地分散在乙酸乙酯溶剂中,制得CNT分散液,同时对三维气流成网非织造材料(NW)进行处理,制得三维非织造材料基压阻式传感器(NW-PVAc-CNT); 对NW-PVAc-CNT压阻式传感器的传感性能、透气性能以及潜在应用进行探讨。研究表明:该传感器在0~100 kPa工作范围内的灵敏度为1.077 14,电流-电压曲线呈线性关系,并且在不同水平外力压缩-释放下的电流响应都具有良好的重复性,在200次的压缩-循环中的稳定性良好; NW-PVAc-CNT孔隙率为97.40%,透气率高达2 970 mm/s; 该传感器对手指按压、手指和手腕弯曲活动均能够响应,并可监测人体活动,在智能服装方面具有良好的应用价值。
Abstract:
Using polyvinyl acetate(PVAc)as dispersant and binder, carbon nanotubes(CNT)were uniformly dispersed in ethyl acetate solvent to prepare the CNT dispersion solution. Three-dimensional(3D)air-laid nonwovens(NW)was treated with the CNT dispersion and thus 3D nonwovens-based piezoresistive sensor(NW-PVAC-CNT)was prepared. The sensing performance, air permeability and potential application of the NW-PVAc-CNT piezoresistive sensor were discussed. The results show that the sensitivity of the sensor is 1.077 14 in the sensing range of 0~100 kPa and the current-voltage curves shows a linear relationship. The current response under different levels of external compression-release is well repeatable, and the stability is good in 200 compression-release cycles. In addition, the porosity of NW-PVAc-CNT is 97.40%, and the air permeability is as high as 2 970 mm/s. The sensor can monitor human activities, responding to finger pressing, finger bending and wrist bending, which has good application value in smart clothing.

参考文献/References:

[1] BOUTRY C M, BEKER L, KAIZAWA Y, et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow[J]. Nature Biomedical Engineering, 2019, 3(1): 47-57.
[2] ZHONG J W, MA Y, SONG Y, et al. A flexible piezoelectret actuator/sensor patch for mechanical human-machine interfaces[J]. ACS Nano, 2019, 13(6): 7107-7116.
[3] GAO L B, ZHAO N J, XU H C, et al. Flexible pressure sensor with wide linear sensing range for human-machine interaction[J]. IEEE Transactions on Electron Devices, 2022, 69(7): 3901-3907.
[4] ZHENG Y J, YIN R, ZHAO Y, et al. Conductive MXene/cotton fabric based pressure sensor with both high sensitivity and wide sensing range for human motion detection and e-skin[J]. Chemical Engineering Journal, 2021, 420: 127720.
[5] CHENG Y F, MA Y N, LI L Y, et al. Bioinspired microspines for a high-performance spray Ti3C2Tx MXene-based piezoresistive sensor[J]. ACS Nano, 2020, 14(2): 2145-2155.
[6] XIONG Y X, SHEN Y K, TIAN L, et al. A flexible, ultra-highly sensitive and stable capacitive pressure sensor with convex microarrays for motion and health monitoring[J]. Nano Energy, 2020, 70: 104436.
[7] FANG Y S, ZOU Y J, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021, 33(41): e2104178.
[8] LIU H, CHEN X Y, ZHENG Y J, et al. Lightweight, superelastic, and hydrophobic polyimide nanofiber/MXene composite aerogel for wearable piezoresistive sensor and oil/water separation applications[J]. Advanced Functional Materials, 2021, 31(13): 2008006.
[9] ZANG Y P, ZHANG F J, DI C A, et al. Advances of flexible pressure sensors toward artificial intelligence and health care applications[J]. Materials Horizons, 2015, 2(2): 140-156.
[10] YAN J F, MA Y N, JIA G, et al. Bionic MXene based hybrid film design for an ultrasensitive piezoresistive pressure sensor[J]. Chemical Engineering Journal, 2022, 431: 133458.
[11] 李伊梦, 侯晓娟, 张辽原, 等. 石墨烯/PDMS仿生银杏叶微结构柔性压阻式压力传感器[J]. 微纳电子技术, 2020, 57(3): 198-203.
LI Yimeng, HOU Xiaojuan, ZHANG Liaoyuan, et al. Graphene/PDMS biomimetic ginkgo leaf microstructure flexible piezoresistive pressure sensor[J]. Micronanoelectronic Technology, 2020, 57(3): 198-203.(in Chinese)
[12] LIU L P, MENG X C, ZHANG C C, et al. A multifunctional flexible sensor with coupling bionic microstructures inspired by nature[J]. Journal of Materials Chemistry C, 2022, 10(31): 11296-11306.
[13] TAO L Q, ZHANG K N, TIAN H, et al. Graphene-paper pressure sensor for detecting human motions[J]. ACS Nano, 2017, 11(9): 8790-8795.
[14] YANG L Y, MA J, ZHONG W B, et al. Highly accurate fabric piezoresistive sensor with anti-interference from both high humidity and sweat based on hydrophobic non-fluoride titanium dioxide nanoparticles[J]. Journal of Materials Chemistry C, 2021, 9(15): 5217-5226.
[15] 曹少杰, 杨奥林, 肖学良. 棉织物/PVA/CNTs复合柔性压阻式压力传感器的制备与性能研究[J]. 传感技术学报, 2021, 34(6): 728-732.
CAO Shaojie, YANG Aolin, XIAO Xueliang. Preparation and properties study of cotton fabric/PVA/CNTs composite flexible piezoresistive pressure sensor[J]. Chinese Journal of Sensors and Actuators, 2021, 34(6): 728-732.(in Chinese)
[16] 陈凤琴, 魏娟. 柔性可穿戴纺织传感器的研究进展[J]. 上海纺织科技, 2021, 49(6): 13-18, 42.
CHEN Fengqin, WEI Juan. Research progress of flexible wearable textile sensors[J]. Shanghai Textile Science and Technology, 2021, 49(6): 13-18, 42.(in Chinese)
[17] 张啸梅, 杨凯, 焦明立, 等. 纺织材料基可穿戴柔性应力/应变传感器的发展及应用[J]. 上海纺织科技, 2020, 48(8): 17-21.
ZHANG Xiaomei, YANG Kai, JIAO Mingli, et al. Development and application of fiber-based wearable flexible stress/strain sensors[J]. Shanghai Textile Science and Technology, 2020, 48(8): 17-21.(in Chinese)
[18] HUANG W, LI H Q, ZHENG L Z, et al. Superhydrophobic and high-performance wood-based piezoresistive pressure sensors for detecting human motions[J]. Chemical Engineering Journal, 2021, 426: 130837.
[19] QIAN K P, ZHOU J Y, MIAO M, et al. Highly ordered thermoplastic polyurethane/aramid nanofiber conductive foams modulated by kevlar polyanion for piezoresistive sensing and electromagnetic interference shielding[J]. Nano-Micro Letters, 2023, 15(1): 88.[20] QIN Z, LV Y H,FANG X H,et al.Ultralight polypyrrole crosslinked nanofiber aerogel for highly sensitive piezoresistive sensor[J].Chemical Engineering Journal,2022,427:131650.
[21] 林美霞,王嘉雯,肖爽,等.高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J].纺织学报,2022,42(2):61- 68.
LIN Meixia, WANG Jiawen, XIAO Shuang, et al. Preparation and performance of high sensitive ultra-compressed bio-based carbonized flexible pressure sensor[J]. Journal of Textile Research, 2022, 43(2): 61- 68.(in Chinese)
[22] LU Y J, TIAN M W, SUN X T, et al. Highly sensitive wearable 3D piezoresistive pressure sensors based on graphene coated isotropic non-woven substrate[J]. Composites Part A: Applied Science and Manufacturing, 2019, 117: 202-210.
[23] TIAN G L, ZHAN L, DENG J X, et al. Coating of multi-wall carbon nanotubes(MWCNTs)on three-dimensional, bicomponent nonwovens as wearable and high-performance piezoresistive sensors[J]. Chemical Engineering Journal, 2021, 425: 130682.
[24] LIU M Y, HANG C Z, ZHAO X F, et al. Advance on flexible pressure sensors based on metal and carbonaceous nanomaterial[J]. Nano Energy, 2021, 87: 106181.
[25] HE Y, MING Y E, LI W, et al. Highly stable and flexible pressure sensors with modified multi-walled carbon nanotube/polymer composites for human monitoring[J]. Sensors, 2018, 18(5): 1338.
[26] PRESTON C, SONG D, DAI J, et al. Scalable nanomanufacturing of surfactant-free carbon nanotube inks for spray coatings with high conductivity[J]. Nano Research, 2015, 8(7): 2242-2250.
[27] 全国纺织品标准化技术委员会. GB/T 24218.15—2018,纺织品 非织造布试验方法 第15部分:透气性的测定[S]. 北京:中国标准出版社, 2018.
[28] ZHANG J W, ZHANG Y, LI Y Y, et al. Textile-based flexible pressure sensors: a review[J]. Polymer Reviews, 2022, 62(1): 65-94.
(责任编辑:张 雪)

更新日期/Last Update: 2023-12-30