[1]刘津池,于 淼*,刘 静,等.消防服热力学体系的传热机理分析[J].服装学报,2021,6(01):14-22.
 LIU Jinchi,YU Miao*,LIU Jing,et al.Heat Transfer and Flame Retardant Mechanism in the Thermal System of Firefighting Clothing[J].Journal of Clothing Research,2021,6(01):14-22.
点击复制

消防服热力学体系的传热机理分析()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第6卷
期数:
2021年01期
页码:
14-22
栏目:
服装材料与技术
出版日期:
2021-02-28

文章信息/Info

Title:
Heat Transfer and Flame Retardant Mechanism in the Thermal System of Firefighting Clothing
作者:
刘津池;  于 淼*;  刘 静;  王 侠
青岛大学 纺织服装学院,山东 青岛 266071
Author(s):
LIU Jinchi;  YU Miao*;  LIU Jing;  WANG Xia
College of Textiles and Clothing, Qingdao University, Qingdao 266071, China
分类号:
O 414.19; TS 941.731.3
文献标志码:
A
摘要:
消防服有隔绝热源、保护消防员的作用,新角度下消防服热传递机理分析有助于改进设计和提升热防护性能。构建一个消防服系统与火场进行能量交换的热力学体系,探究了该系统中热动微团的分子运动形式及粒子热动能输运模型; 剖析了消防服作为高温火场与低温“消防服系统”界面时的传热模型; 论述了火场环境中消防服的传热机理; 从燃烧和热能输运角度分析了消防服阻燃机理,提出了一些初步的热力学阻燃体系构建思路。这为进一步的消防服传热机理研究奠定基础,也为热防护服的服装结构、面料、纤维等开发设计提供参考。
Abstract:
The important function of firefighting uniform was to isolate heat source and protect firefighter in fire. Appropriate analysis method of fire suit transmission mechanism could attribute to improve the design of firefighting clothing and its thermal protection performance. The thermodynamic system for the energy exchange of the fire suit system in fire was envisaged. Under the system, the molecular motion form of thermal micro-clusters and the particle thermal kinetic energy transfer model were explored in detail. The heat transport model of firefighter uniform as the interface between high-temperature fire scene and low-temperature "fire suit system".From the perspective of thermodynamics, the main factors that affect the heat transfer of fiber entered the fire environment, were discussed. The flame retardant mechanism of firefighting clothing was analyzed from the perspective of combustion and heat transfer, and some basic ideas for building flame retardant systems were proposed preliminarily. The foundation was laid for the further research on the heat transfer mechanism of thermal protective clothing. And the reference for the development and design of thermal protective clothing were provided, from the perspectives of clothing structure, fabric and fiber.

参考文献/References:

[1] 邓梦, 王云仪. 低辐射热暴露下消防服热防护性能测评方法研究进展[J]. 纺织学报, 2017, 38(12): 162-168,176.
DENG Meng, WANG Yunyi. Analysis of evaluation method of thermal protective performance of firefighter protective clothing exposure to low level radiation[J]. Journal of Textile Research, 2017, 38(12): 162-168,176.(in Chinese)
[2] 翟胜男, 陈太球, 蒋春燕, 等. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(8): 100-104.
ZHAI Shengnan, CHEN Taiqiu, JIANG Chunyan, et al. Comprehensive evaluation on thermal protection and comfort of outer fabrics of firefighter protective clothing[J]. Journal of Textile Research, 2018, 39(8): 100-104.(in Chinese)
[3] 何华玲. 消防服用织物热防护性能及热湿舒适性能研究[D]. 天津: 天津工业大学, 2017.
[4] LI Weixian,SHI Yanming. Gambiered Guangdong silk craft-a venerable ecological coated technology[C]//The 5th China International Silk Conference.Suzhou: Soochow University,2004:553-559.
[5] 李向红, 马军. 消防员灭火防护服舒适层织物设计与性能测试[J]. 上海纺织科技, 2015, 43(11): 9-11,40.
LI Xianghong, MA Jun. The design of lining fabric for firemen’s fighting protective clothing and its property test[J]. Shanghai Textile Science and Technology, 2015, 43(11): 9-11,40.(in Chinese)
[6] 刘林玉. 消防服多层织物热防护性研究及其舒适性综合评价[D]. 杭州: 浙江理工大学, 2019.
[7] 苏云, 王云仪, 李俊. 消防服衣下空气层热传递机制研究进展[J]. 纺织学报, 2016, 37(1): 167-172.
SU Yun, WANG Yunyi, LI Jun. Research progress of heat transfer mechanism of air gap under firefighter protective clothing[J]. Journal of Textile Research, 2016, 37(1): 167-172.(in Chinese)
[8] 张渭源. 服装舒适性与功能[M]. 2版. 北京: 中国纺织出版社, 2011: 44- 46.
[9] 黄勇, 陈长鹏, 何长英. 基于LABVIEW的虚拟实验仪器研究黑体辐射特性[J]. 大学物理实验, 2018, 31(5): 104-107.
HUANG Yong, CHEN Changpeng, HE Changying. Study of blackbody radiation character based on LABVIEW[J]. Physical Experiment of College, 2018, 31(5): 104-107.(in Chinese)
[10] 张改青. 谈谈固体的热膨胀[J]. 物理教学, 1992(2): 10-11.
ZHANG Gaiqing. Talk about the thermal expansion of solids[J]. Physics Teaching, 1992(2): 10-11.(in Chinese)
[11] 刘汝盟. 纳尺度碳材料结构热振动[D]. 南京: 南京航空航天大学, 2016.
[12] 张洪亮, 雷海乐, 唐永建, 等. 纳米结构Cu固体材料的低温热容性能研究[J]. 物理学报, 2010, 59(1): 471- 475.
ZHANG Hongliang, LEI Haile, TANG Yongjian, et al. Thermal capacity of nanocrystalline copper at low temperatures[J]. Acta Physica Sinica, 2010, 59(1): 471- 475.(in Chinese)
[13] 肖俐, 刘晓霞, 王婷婷, 等. 基于热线法的纺织材料导热系数测试研究[J]. 上海纺织科技, 2016, 44(10): 11-15.
XIAO Li, LIU Xiaoxia, WANG Tingting, et al. Thermal conductivity measurement of textile materials with hot-wire method[J]. Shanghai Textile Science and Technology, 2016, 44(10): 11-15.(in Chinese)
[14] 于伟东, 储才元. 纺织物理[M]. 2版. 上海: 东华大学出版社, 2009: 226-238.
[15] 庞方丽, 刘星, 王瑞. 织物热传递性能的影响因素[J]. 轻纺工业与技术, 2013, 42(2):21-24.
PANG Fangli, LIU Xing, WANG Rui. Factors affecting the heat transfer properties of fabrics[J].Light and Textile Industry and Technology, 2013, 42(2):21-24.(in Chinese)
[16] 王灿才. 数字喷墨印花技术及应用[J]. 丝网印刷, 2005(9): 34-36.
WANG Cancai. Textile ink-jet printing technology and its application[J]. Screen Printing, 2005(9): 34-36.(in Chinese)
[17] 肖俐. 热线法测试纺织纤维导热系数的方法研究[D]. 上海: 上海工程技术大学, 2016.
[18] 石宏亮. 纺织品传热机理的理论探讨[J]. 南通工学院学报, 2001, 17(4): 44- 47.
SHI Hongliang. The review of heat transmisson mechanism of the textiles[J]. Journal of Nantong Institute of Technology, 2001, 17(4): 44- 47.(in Chinese)
[19] 杨雨舟, 刘晓霞, 肖俐, 等. 纤维排列方向对热线法导热系数测试的影响[J]. 轻纺工业与技术, 2015(1):23-25.
YANG Yuzhou, LIU Xiaoxia, XIAO Li, et al. Effect of fiber alignment on thermal conductivity test by hot wire method [J]. Light and Textile Industry and Technology, 2015(1):23-25.(in Chinese)
[20] 魏玉娟, 王永宏. 纺织品数码喷墨印花研究现状[J]. 针织工业, 2006(5): 39- 42,72.
WEI Yujuan, WANG Yonghong. The present research situation of digital ink jet printing technology of textiles[J]. Knitting Industries, 2006(5): 39- 42,72.(in Chinese)
[21] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 143.
[22] 陈萌. 辐射热暴露下湿态阻燃织物的热湿输运对其热防护性能的影响[D]. 郑州: 中原工学院, 2018.
[23] BARKER R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006, 76(1): 27-31.
[24] MAKINEN H, SMOLANDER J, VUORINEN H. Simulation of the effect of moisture content in underwear and on the skin surface on steam burns of fire fighters[M]//Performance of Protective Clothing: Second Symposium. West Conshohocken: ASTM International, 1988: 415-421.
[25] 李红燕. 单层织物湿态热防护性能测试与分析[J]. 纺织学报, 2009, 30(12): 95-98.
LI Hongyan. Testing and analysis on wet thermal protective performance of single layer fabrics[J]. Journal of Textile Research, 2009, 30(12): 95-98.(in Chinese)
[26] SONG G W, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing[J]. Textile Research Journal, 2011, 81(11): 1124-1138.
[27] BARKER R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures[J]. Textile Research Journal, 2006, 76(1): 27-31.
[28] FU M, WENG W G, HAN X F. Effects of moisture transfer and condensation in protective clothing based on thermal manikin experiment in fire environment[J]. Procedia Engineering, 2013, 62: 760-768.
[29] LEE Y M, BARKER R L. Effect of moisture on the thermal protective performance of heat-resistant fabrics[J]. Journal of Fire Sciences, 1986, 4(5): 315-331.
[30] ZHU F L, LI K J. Numerical modeling of heat and moisture through wet cotton fabric using the method of chemical thermodynamic law under simulated fire[J]. Fire Technology, 2011, 47(3): 801-819.
[31] UDAYRAJ, TALUKDAR P, ALAGIRUSAMY R, et al. Heat transfer analysis and second degree burn prediction in human skin exposed to flame and radiant heat using dual phase lag phenomenon[J]. International Journal of Heat and Mass Transfer, 2014, 78: 1068-1079.
[32] 江海红. 阻燃PET及其纤维的燃烧性能—燃烧机理—群子参数之间关系的研究[D]. 北京: 北京化工大学, 2000.
[33] 韦节彬. 阻燃纤维性能及散纤维制条工艺探讨[J]. 毛纺科技, 2013, 41(6): 13-15.
WEI Jiebin. Process discussion of flame-retardant fiber properties and loose fiber slivering[J]. Wool Textile Journal, 2013, 41(6): 13-15.(in Chinese)
[34] 张洪昆. 纺织品阻燃综述[J]. 印染助剂, 2009, 26(2): 7-11,15.
ZHANG Hongkun. The review of flame retardancy on textiles[J]. Textile Auxiliaries, 2009, 26(2): 7-11,15.(in Chinese)
[35] 杨丽, 周逸潇, 韩新宇, 等. 阻燃剂阻燃机理的探讨[J]. 天津化工, 2010, 24(1): 1- 4.
YANG Li, ZHOU Yixiao, HAN Xinyu, et al. Discussion on the mechanism of flame retardants[J]. Tianjin Chemical Industry, 2010, 24(1): 1- 4.(in Chinese)
[36] 杨东昌, 齐鲁. 黏胶纤维阻燃改性方法[J]. 毛纺科技, 2016, 44(6): 54-57.
YANG Dongchang, QI Lu. Method for flame retardant modification of viscose fiber[J]. Wool Textile Journal, 2016, 44(6): 54-57.(in Chinese)
[37] 霍蒙, 吴舸, 袁宏, 等. 温差发电技术研究综述[J]. 科技与创新, 2020(10): 94-95,97.
HUO Meng, WU Ge, YUAN Hong, et al. Summary of thermoelectric technology research [J]. Science and Technology and Innovation, 2020(10): 94-95,97.(in Chinese)
[38] 刘廷贤. 隐形飞机隐身技术的基本原理[J]. 物理通报, 1998(1): 44- 46.
LIU Tingxian. The fundamentals of stealth aircraft stealth technology [J]. Physics Bulletin, 1998(1): 44- 46.(in Chinese)
[39] 曹泽阳,高虹霓. 隐身飞机的发展及其防御技术[J]. 飞航导弹,2001(9): 29-32.
CAO Zeyang, GAO Hongni. The development of stealth aircraft and its defense technology[J]. Winged Missiles Journal,2001(9): 29-32.(in Chinese)
(责任编辑:邢宝妹)

更新日期/Last Update: 2020-02-28