[1]李思明,胡雨洁,方镁淇,等.具有形状记忆功能的负泊松比结构材料的研究进展[J].服装学报,2020,5(04):290-299.
 LI Siming,HU Yujie,FANG Meiqi,et al.Research Progress of Negative Poisson’s Ratio Structures and Materials with Memory Function[J].Journal of Clothing Research,2020,5(04):290-299.
点击复制

具有形状记忆功能的负泊松比结构材料的研究进展()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第5卷
期数:
2020年04期
页码:
290-299
栏目:
服装材料科学
出版日期:
2020-08-31

文章信息/Info

Title:
Research Progress of Negative Poisson’s Ratio Structures and Materials with Memory Function
作者:
李思明;  胡雨洁;  方镁淇;  贺 燕;  贺录祥;  赵 晨;  肖学良*
江南大学 生态纺织教育部重点实验室,江苏 无锡 214122
Author(s):
LI Siming;  HU Yujie;  FANG Meiqi;  HE Yan;  HE Luxiang; ZHAO Chen;  XIAO Xueliang*
Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi 214122,China
分类号:
TB 381
文献标志码:
A
摘要:
负泊松比结构材料具有独特的应力应变、高切变模量、断裂韧性以及冲击回弹性等性能,在航空航天、航海运输、医疗卫生和建筑等领域有着潜在的应用,成为功能材料研究的热点。综述了具有形状记忆功能的负泊松比材料的制备方式及应用,分别对二维和三维负泊松比结构与记忆材料的结合进行归纳,分析各种结构的作用机理。根据负泊松比结构与形状记忆聚合物结合的使用案例,提出形状记忆负泊松比材料面临的问题和未来发展方向。
Abstract:
Negative Poisson’s ratio structural materials have unique properties such as stress and strain, high shear modulus, fracture toughness, and impact resilience, which have potential applications in the fields of aerospace, navigation, transportation, medical and health, and construction, and this becomes a research focus recently. In this study, we summarized the research history, the principle and application of negative Poisson’s ratio materials with shape memory function. Through the combination of 2D and 3D negative Poisson’s ratio structures and memory materials, the mechanical principles and action mechanisms of various structures were analyzed. Finally, based on the combined use of negative Poisson’s ratio structure and shape memory polymers, the challenges and future development directions of shape memory negative Poisson’s ratio materials are proposed.

参考文献/References:

[1] 周铭, 杜赵群. 负泊松比结构纺织材料的研究进展[J]. 纺织学报, 2014, 35(2): 99-108.
ZHOU Ming, DU Zhaoqun. Research advances in negative Poisson’s ratio structured textile materials[J]. Journal of Textile Research, 2014, 35(2): 99-108.(in Chinese)
[2] WANG Haidi, LI Xingxing, LI Pai, et al. δ-phosphorene: a two dimensional material with a highly negative Poisson’s ratio[J]. Nanoscale, 2017, 9(2): 850-855.
[3] 孔凡臣, 孙建伟, 张邦成,等. 基于四杆曲柄滑块机构的可展机构设计[J]. 长春工业大学学报, 2018, 39(1):7-13,111.
KONG Fanchen, SUN Jianwei, ZHANG Bangcheng, et al. Design of deployable mechanisms based on four-bar slider-crank mechanism[J]. Journal of Changchun University of Technology, 2018, 39(1):7-13,111.(in Chinese)
[4] KOU Liangzhi, MA Yandong, TANG Chun, et al. Auxetic and ferroelastic borophane: a novel 2D material with negative Poisson’s ratio and switchable dirac transport channels[J]. Nano Letters, 2016, 16(12): 7910-7914.
[5] QIN Huasong, SUN Yu,MAKANEMI M, et al. Negative Poisson’s ratio in rippled graphene[J]. Nanoscale, 2017, 9(12): 4135- 4142.
[6] MORTAZAVI B, SHAHROKHI M, MAKAREMI M, et al. Anisotropic mechanical and optical response and negative Poisson’s ratio in Mo2C nanomembranes revealed by first-principles simulations[J]. Nanotech-Nology, 2017, 28(11):115705.
[7] QIN Rui, ZHENG Jiaxin, ZHU Wenjun. Sign-tunable Poisson’s ratio in semi-fluorinated graphene[J]. Nanoscale, 2017, 9(1): 128-133.
[8] WANG Yunche, SHEN Mengwei, LIAO Simin. Microstructural effects on the Poisson’s ratio of star-shaped two-dimensional systems[J]. Physica Status Solidi, 2017, 254(12): 1770264.
[9] SAMUEL C U, YONG K K, STEVEN B W, et al. The formation and performance of auxetic textiles. Part I: theoretical and technical considerations[J].Journal of the Textile Institute, 2010, 101(7): 660-667.
[10] SAMUEL C U, YONG K K, STEVEN B W, et al. The formation and performance of auxetic textiles. Part II: geometry and structural properties[J].Journal of the Textile Institute, 2011, 102(5): 424- 433.
[11] ALDERSON K,ALDERSON A,ANAND S,et al. Auxetic warp knit textile structures[J]. Physica Status Solidi, 2012, 249(7): 1322-1329.
[12] LIU Yanping, HU Hong, JIMMY K C L, et al. Negative Poisson’s ratio weft-knitted fabrics[J]. Textile Research Journal, 2010, 80(9): 856-863.
[13] HU Hong, WANG Zhengyue, LIU Su. Development of auxetic fabrics using flat knitting technology[J]. Textile Research Journal, 2011, 81(14): 1493-1502.
[14] 徐时吟, 黄修长, 华宏星. 六韧带手性结构的能带特性[J]. 上海交通大学学报, 2013, 47(2): 167-172.
XU Shiyin, HUANG Xiuchang, HUA Hongxing. Study on the band structure of hexagonal chiral structures[J]. Journal of Shanghai Jiaotong University, 2013, 47(2): 167-172.(in Chinese)
[15] 杨智春, 邓庆田. 负泊松比材料与结构的力学性能研究及应用[J]. 力学进展, 2011, 41(3): 335-350.
YANG Zhichun, DENG Qingtian.Mechanical property and application of materials and structures with negative Pission’s ratio[J]. Advances in Mechanics, 2011, 41(3): 335-350.(in Chinese)
[16] WEBBER R S, ALDERSON K L,EVANS K E. Novel variations in the microstructure of the auxetic microporous ultra-high molecular weight polyethylene. Part I: processing and microstructure[J]. Polymer Engineering and Science, 2000, 40(8): 1894-1905.
[17] ALDERSON K L, ALDERSON A, SMART G, et al. Auxetic polypropylene fibres. Part I: manufacture and characterisation[J]. Plastics, Rubber and Composites, 2002, 31(8): 344-349.
[18] ALDERSON K L,WEBBER R S,KETTLE A P, et al. Novel fabrication route for auxetic polyethylene. Part I: processing and microstructure[J]. Polymer Engineering and Science, 2005, 45(4): 568-578.
[19] ZHANG Dongxing, XIAO Junfeng, YU Wangli, et al. Hierarchical metal/polymer materials of tunable negative Poisson’s ratio fabricated by initiator-integrated 3D printing(I3DP)[J]. Nanotechnology, 2018, 29(50): 505704.
[20] 杨杰, 董二宝, 张世武, 等. 智能飞行器可变形结构的构想与实现[C]//航空飞行器发展与空气动力学研讨会. 杭州:中国航空学会空气动力学专业委员会,2006.
[21] DONG Erbao,LI Y X,YANG Jie. Design and optimization of compliant cellular structures for morphing aircraft skins[C]//Proceedings of the 19th international conference on adaptive structures and technologies. Ascona: [s.n.],2008.
[22] 董二宝. 智能变形飞行器结构实现机制与若干关键技术研究[D]. 合肥:中国科学技术大学, 2010.
[23] 姚永涛,赵显伟,刘彦菊,等. 基于双曲率的负泊松比蜂窝结构的可展开反射镜镜体:201210233717.1[P].2012-11-07.
[24] 杜昀桐. 基于形状记忆聚合物的可变形蜂窝结构力学性能研究[D]. 哈尔滨:哈尔滨工业大学, 2016.
[25] WAN Hui,HIDEYUKI O,SHINYA K,et al. A study of negative Poisson’s ratio in auxetic honeycombs based on a large deflection model[J]. European Journal of Mechanics(A:Solids), 2004, 23(1): 95-106.
[26] BERTOLDI K, REIS P M, WILLSHAW S, et al. Negative Poisson’s ratio behavior induced by an elastic instabi-lity[J]. Advanced Materials, 2010, 22(3): 361-366.
[27] 姚永涛,杨成,黄建,等. 一种柔性显示器的柔性背板:CN201310121957.7[P].2013-06-26.
[28] GRIMA J N, WINCZEWSKI S, MIZZI L, et al. Tailoring graphene to achieve negative Poisson’s ratio properties[J]. Advanced Materials, 2015, 27(8): 1455-1459.
[29] HUANG X, BLACKBURN S. Developing a new processing route to manufacture honeycomb ceramics with negative Poisons ratio[J]. Key Engineering Materials, 2001, 206: 201-204.
[30] 王信涛. 三维有序负泊松比结构的设计、制备与力学性能表征[D]. 哈尔滨:哈尔滨工业大学, 2018.
[31] FU Minghui, LIU Fengming, HU Lingling. A novel category of 3D chiral material with negative Poisson’s ratio[J]. Composites Science and Technology, 2018, 160:111-118.
[32] 张伟, 侯文彬, 胡平. 新型负泊松比多孔吸能盒平台区力学性能[J]. 复合材料学报, 2015, 32(2): 534-541.
ZHANG Wei, HOU Wenbin, HU Ping. Mechanical properties of new negative Possion’s ratio crush box with cellular structure in plateau stage[J]. Acta Materiae Compositae Sinica, 2015, 32(2): 534-541.(in Chinese)
[33] 王信涛, 马力, 杨金水, 等. 三维负泊松比结构压缩模量及泊松比性质研究[C]//2014年全国固体力学学术大会论文集.哈尔滨:中国力学学会固体力学专业委员会, 2014.
[34] 杨星, 于野, 张伟, 等. 基于三维多胞结构的汽车吸能盒优化设计[J]. 大连理工大学学报, 2017, 57(4): 331-336.
YANG Xing, YU Ye, ZHANG Wei, et al. Optimization design of automobile crash box based on 3D cellular structure[J]. Journal of Dalian University of Technology, 2017, 57(4): 331-336.(in Chinese)
[35] 陶伟灏. 主动变形负泊松比蜂窝结构用于变体机翼[J]. 设备管理与维修,2017(17):86-88.
TAO Weihao. Active Deformation negative Poisson ratio honeycomb structure for variant wings [J]. Plant Maintenance Engineering, 2017, 17: 86-88.(in Chinese)
[36] 吴文征, 武子超, 耿鹏,等. 负泊松比可降解形状记忆聚合物血管支架增材制造方法:CN106236338A[P].2016-12-21.
[37] 于靖军, 谢岩, 裴旭. 负泊松比超材料研究进展[J]. 机械工程学报, 2018, 54(13): 1-14.
YU Jingjun, XIE Yan, PEI Xu. Research progress of negative Poisson’s ratio metamaterials[J]. Journal of Mechanical Engineering, 2018, 54(13): 1-14.(in Chinese)
[38] 蒋建军, 胡毅, 陈星, 等. 形状记忆智能复合材料的发展与应用[J]. 材料工程, 2018, 46(8): 1-13.
JIANG Jianjun, HU Yi, CHEN Xing, et al. Development and application of shape memory intelligent composites[J]. Journal of Materials Engineering, 2018, 46(8): 1-13.(in Chinese)
[39] 周一一,蒋青洲. 一种三维负泊松比周期性多孔材料及其制作方法:CN201610928511.9[P].2017-03-29.
[40] 常玉萍, 马丕波. 基于网眼结构的负泊松比经编间隔织物模型及其拉伸性能[J]. 纺织学报, 2017, 38(9): 59-65.
CHANG Yuping, MA Pibo. Model and tensile performance of negative Poisson’s ratio warp-knitted spacer structures based on mesh structure[J].Journal of Textile Research,2017, 38(9): 59-65.(in Chinese)
[41] 葛朝阳, 胡红. 一种新型三维负泊松比织物结构的压缩变形分析[J]. 东华大学学报(自然科学版), 2014, 40(5):543-548,559.
GE Zhaoyang, HU Hong. Compression deformation analysis of an innovative 3D fabric structure with negative Poisson’s ratio[J].Journal of Donghua University(Natural Science Edition), 2014, 40(5): 543-548,559.(in Chinese)
[42] 王波, 矫桂琼, 张增光. 三维编织复合材料泊松比的探讨[C]//第十三届全国复合材料学术会议论文集.成都:中国航空学会,2004: 1320-1324.
[43] LIU Tuo, LI Jing, PAN Yi, et al. A new approach to shape memory polymer: design and preparation of poly(methyl methacrylate)composites in the presence of star poly(ethylene glycol)[J]. Soft Matter, 2011, 7(5): 1641-1643.
[44] 李芝华, 陈明, 马立, 等. 聚氨酯改性环氧树脂形状记忆材料[J]. 宇航材料工艺, 2015, 45(1): 24-27.
LI Zhihua, CHEN Ming, MA Li, et al. Modified shape memory epoxy by blending polyurethane[J]. Aerospace Materials and Technology, 2015, 45(1): 24-27.(in Chinese)
[45] 武元鹏, 丁强, 李晶, 等. 基于聚乳酸的可降解形状记忆高分子的研究进展[J]. 高分子通报, 2012(10): 33-39.
WU Yuanpeng, DING Qiang, Li Jing, et al. Research progress of shape memory polymer materials based on poly(lactic acid)[J]. Polymer Bulletin, 2012(10): 33-39.(in Chinese)
[46] YU Y L, IKEDA T. Photodeformable polymers: a new kind of promising smart material for micro- and nano-applications[J]. Macromolecular Chemistry and Physics, 2010, 206(17): 1705-1708.
[47] 武元鹏, 林元华, 周莹, 等. 光致型形状记忆高分子材料[J]. 化学进展, 2012, 24(10): 2004-2010.
WU Yuanpeng, LIN Yuanhua, ZHOU Ying, et al. Light-induced shape memory polymer materials[J]. Progress in Chemistry, 2012, 24(10): 2004-2010.(in Chinese)
[48] LENG Jinsong, LAN Xin, LIU Yanju, et al. Shape-memory polymers and their composites: stimulus methods and applications[J]. Progress in Materials Science, 2011, 56(7): 1077-1135.
[49] MARTIN D H, STEFAN B, CHRISTINE W, et al. Shape memory polymers: past, present and future developments[J]. Progress in Polymer Science, 2015(49-50):3-33.
[50] SERRANO M C, AMEER G A. Recent insights into the biomedical applications of shape-memory polymers[J]. Macromolecular Bioscience, 2012, 12(9): 1156-1171.
[51] HARDY J G, PALMA M, WIND S J, et al. Responsive biomaterials: advances in materials based on shape memory polymers[J]. Advanced Materials, 2016, 27(28): 5717-5724.
[52] 张志明, 刘秀军, 赵高升, 等. 双酚F型环氧丙烯酸酯光敏树脂的制备[J]. 精细化工, 2018, 35(3): 383-387,442.
ZHANG Zhiming, LIU Xiujun, ZHAO Gaosheng, et al. Preparation and characterization of bisphenol F type epoxy acrylate photosensitive resin[J]. Fine Chemicals, 2018, 35(3): 383-387,442.(in Chinese)
[53] ZHANG Ruisui, GUO Xiaogang, LIU Yanju, et al. Theoretical analysis and experiments of a space deployable truss structure[J]. Composite Structures, 2014, 112: 226-230.
[54] 胡金莲. 形状记忆聚合物在生物医学领域的研究进展[J]. 中国材料进展, 2015, 34(3): 191-203.
HU Jinlian. Progress of shape memory polymers in biomedical applications[J]. Materials China, 2015, 34(3):191-203.(in Chinese)
[55] 刘立武,兰鑫,刘彦菊,等.基于形状记忆聚合物复合材料的空间展开结构[C]//2018年全国固体力学学术会议摘要集(上).哈尔滨:中国力学学会固体力学专业委员会,2018.
[56] LIU Jianxing, ZHANG Yihui. Soft network materials with isotropic negative Poisson’s ratios over large strains[J]. Soft Matter, 2018, 14(5): 693-703.
[57] YU Kai, GE Qi, QI H J. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers[J]. Nature Communication, 2014, 5(2): 3066.
[58] LIU Yanju,WEI Hongqiu, ZHANG Qiwei,et al. Direct-write fabrication of 4D active shape-changing structures based on a shape memory polymer and its nanocomposite[J]. ACS Applied Materials and Interfaces, 2017, 9(1): 876-883.
[59] 洪伟. 3D打印可编程形状记忆负泊松比结构的设计与研究[D]. 哈尔滨,哈尔滨工业大学, 2019.
[60] 武子超. 聚乳酸负泊松比血管支架3D打印及其性能研究[D]. 长春:吉林大学, 2018.
[61] 许赟成. 形状记忆负泊松比泡沫的制备与力学性能分析[D]. 哈尔滨: 哈尔滨工业大学, 2018.
(责任编辑:邢宝妹)

更新日期/Last Update: 2020-08-30