[1]林佳红,方丽英*.基于决策树算法的裤子生产模块工时回归预测[J].服装学报,2025,10(02):116-122.
 LIN Jiahong,FANG Liying*.Regression Prediction of Man-Hour for the Trousers Production Module Based on Decision Tree Algorithm[J].Journal of Clothing Research,2025,10(02):116-122.
点击复制

基于决策树算法的裤子生产模块工时回归预测
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年02期
页码:
116-122
栏目:
服装智造
出版日期:
2025-04-30

文章信息/Info

Title:
Regression Prediction of Man-Hour for the Trousers Production Module Based on Decision Tree Algorithm
作者:
林佳红1;  方丽英*2
1.浙江理工大学 服装学院,浙江 杭州 310018; 2.浙江理工大学 国际教育学院,浙江 杭州 310018
Author(s):
LIN Jiahong1;  FANG Liying*2
(1.School of Fashion Design and Engineering,Zhejiang Sci-Tech University,Hangzhou 310018,China; 2.School of International Education,Zhejiang Sci-Tech University,Hangzhou 310018,China
分类号:
TS 941.63; TS 941.714.2
文献标志码:
A
摘要:
服装标准工时是企业生产编排、预估生产周期、考核员工绩效的依据。当前服装款式复杂多变,使用传统定额方法需耗费大量的时间成本,阻碍了企业的生产排程与调度。以裤子品类为例,提出基于决策树回归的模块工时预测方法,根据企业所生产的款式特点进行模块划分,生成模块编码与模块工时,并建立裤子模块工时数据库。同时,在机器学习库的决策树回归模型中输入服装特征编码,可预测出各模块工时,为企业模块化单元的集成应用构建工时基础。结果表明,模型各模块工时的平均预测准确率达90.00%,总工时的预测准确率达94.96%,可为服装企业工时定额提供一种高效可行的方案。
Abstract:
Garment standard man-hour serves as the foundation for enterprise production scheduling, estimating production cycles, and evaluating employee performance. The increasing complexity and diversity of garment styles necessitate the adoption of efficient methods to avoid the high time costs associated with traditional quota-based approaches, thereby improving production planning and scheduling in enterprises. By focusing on trousers as a case study, this research introduces a module man-hour forecasting methodology leveraging decision tree regression. Based on the style characteristics of garments manufactured by enterprises, modules are defined, producing module codes and corresponding man-hours, and assembling a database for trouser module man-hours. Furthermore, inputting garment feature codes into the decision tree regression model within a machine learning library enables the prediction of individual module man-hours, providing a basis for integrating modular units within enterprises. The results demonstrate that the model achieves an average prediction accuracy of 90.00% for individual module man-hours and a total man-hour prediction accuracy of 94.96%, offering garment enterprises an efficient and practical solution for man-hour quota determination.

参考文献/References:

[1] 谢鹏,韦依依,乔小涛. 数字化创新准备、动态能力与企业数字化创新[J]. 华东经济管理,2023,37(7):49-58.
XIE Peng,WEI Yiyi,QIAO Xiaotao. Digital innovation readiness,dynamic capabilities, and digital innovation[J]. East China Economic Management,2023,37(7):49-58.(in Chinese)
[2] 任若安,陈涵. “十四五”规划下服装企业数字化转型升级路径研究[J]. 毛纺科技,2022,50(4):104-111.
REN Ruoan,CHEN Han. Research on digital transformation and upgrading path of garment enterprises under the "14th Five-Year Plan"[J]. Wool Textile Journal, 2022, 50(4): 104-111.(in Chinese)
[3] 王玲, 杨以雄, 陈炜. 服装工序相似性标准工时预测[J]. 纺织学报, 2016, 37(11): 114-119, 125.
WANG Ling, YANG Yixiong, CHEN Wei. Prediction of garment standard time based on processes similarity[J]. Journal of Textile Research,2016,37(11):114-119,125.(in Chinese)
[4] 汪能洋, 李郝林, 王家乐, 等. 基于模糊推理技术的改进工时定额方法[J]. 组合机床与自动化加工技术, 2022(9): 155-159.
WANG Nengyang, LI Haolin, WANG Jiale, et al. Improved method for determining time-quota based on fuzzy inference technology[J]. Modular Machine Tool and Automatic Manufac-turing Technique, 2022(9): 155-159.(in Chinese)
[5] YU T T, CAI H X. The prediction of the man-hour in aircraft assembly based on support vector machine particle swarm optimization[J]. Journal of Aerospace Technology and Management, 2015, 7(1): 19-30.
[6] ISLK K, ALPTEKIN S E. A benchmark comparison of Gaussian process regression, support vector machines, and ANFIS for man-hour prediction in power transformers manufacturing[J]. Procedia Computer Science, 2022, 207: 2567-2577.
[7] 周海媚, 徐燕妮, 张旭靖, 等. 服装款式模块化设计方法[J]. 纺织学报, 2015, 36(8): 104-109.
ZHOU Haimei, XU Yanni, ZHANG Xujing, et al. Modularized design method of garment style[J]. Journal of Textile Research, 2015, 36(8): 104-109.(in Chinese)
[8] 刘艳梅, 王花娥. 模块化的毛衫产品族设计及评价指标[J]. 纺织学报, 2016, 37(12): 97-102, 116.
LIU Yanmei, WANG Hua'e. Modularized product family design method of sweater and evaluation indexes[J]. Journal of Textile Research, 2016, 37(12): 97-102, 116.(in Chinese)
[9] 闫亦农. 基于“互联网+” 的蒙古族服装个性化定制模块化设计[J]. 毛纺科技, 2023, 51(3): 66-73.
YAN Yinong. Mongolian personalized custom clothing modular design by "Internet +"[J]. Wool Textile Journal, 2023, 51(3): 66-73.(in Chinese)
[10] MODRAK V, SOLTYSOVA Z. Exploration of the optimal modularity in assembly line design[J]. Scientific Reports, 2022, 12: 20414.
[11] VERMA N K, CHATTERJEE A K. Process flexibility in the presence of product modularity: does modularity help?[J]. International Journal of Production Economics, 2023, 256: 108723.
[12] 张丽珍, 邵祺, 杨加庆, 等. 汽车装配标准工时设计中模块化设计方法的研究[J]. 现代制造工程, 2017(5): 120-125.
ZHANG Lizhen, SHAO Qi, YANG Jiaqing, et al. Research on modular design method of standard time design in automobile assembly[J]. Modern Manufacturing Engineering, 2017(5): 120-125.(in Chinese)
[13] 宋政. 基于模块化设计的整车内物流运作标准工时研究[J]. 物流科技, 2020, 43(2): 45- 48.
SONG Zheng. Research on modular design method of standard time design in automobile assembly[J]. Logistics Sci-Tech, 2020, 43(2): 45- 48.(in Chinese)
[14] 王海军, 赵惠妍, 金姝彤. 模块化如何赋能企业智能制造升级? 一个探索性案例研究[J]. 科技进步与对策, 2024, 41(1): 149-160.
WANG Haijun, ZHAO Huiyan, JIN Shutong. How does modularization empower enterprises to upgrade their intelligent manufacturing? an exploratory case study[J]. Science and Technology Progress and Policy, 2024, 41(1): 149-160.(in Chinese)
[15] 刘乐,任祥放,金 鹏,等.基于Python的女式衬衫版样自动化生成技术[J].服装学报,2023,8(3):201-210.
LIU Le,REN Xiangfang,JIN Peng,et al.Automatic generation technology of women's ahirt template based on Python[J].Journal of Clothing Research,2023,8(3):201-210.(in Chinese)
[16] 李雪霞, 张志斌, 褚建立. 基于智能化缝制单元的服装柔性生产线的构建[J]. 毛纺科技, 2020, 48(10): 77-80.
LI Xuexia, ZHANG Zhibin, CHU Jianli. Research on the construction of garment flexible production line based on intelligent sewing unit[J]. Wool Textile Journal, 2020, 48(10): 77-80.(in Chinese)
[17] 李逸轩.社会治理视域下城市家具智能化设计研究[J].家具与室内装饰,2024,31(4):92-96.
LI Yixuan.Studying of intelligent design of urban furniture from the perspective of social governance[J].Furniture and Interior Design, 2024,31(4):92-96.(in Chinese)
[18] 朱冰洁,李喆,罗建勋.基于5G+AI构建皮革制品虚拟仿真“元宇宙”中心[J].皮革科学与工程,2023,33(2):98-102,108.
ZHU Bingjie, LI Zhe, LUO Jianxun. Construction of leather goods virtual simulation "Metaverse" center based on "5G+AI" technology[J]. Leather Science and Engineering, 2023, 33(2): 98-102,108.(in Chinese)




相似文献/References:

[1]杨雪梅,陆 璐,贾 雯.基于知识管理的内衣设计及搭配资源库[J].服装学报,2018,3(04):314.
 YANG Xuemei,LU Lu,JIA Wen.Underwear Design and Matching Resource Library Based on Knowledge Management[J].Journal of Clothing Research,2018,3(02):314.
[2]占永胜,方丽英*.基于模块化的女式衬衫混合生产流水线仿真研究[J].服装学报,2025,10(02):123.
 ZHAN Yongsheng,FANG Liying*.Simulation Research on Modular-Based Mixed Production Line for Women's Shirts[J].Journal of Clothing Research,2025,10(02):123.

更新日期/Last Update: 2025-04-30