[1]邵 秋,龚新霞,杨瑞华*.循环再生纤维在转杯纺成纱器内的运动模拟与分析[J].服装学报,2025,10(01):9-0015.
 SHAO Qiu,GONG Xinxia,YANG Ruihua*.Simulation and Analysis of the Motion of Recycled Fibers in Rotor Spinning Machine[J].Journal of Clothing Research,2025,10(01):9-0015.
点击复制

循环再生纤维在转杯纺成纱器内的运动模拟与分析()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第10卷
期数:
2025年01期
页码:
9-0015
栏目:
服装材料
出版日期:
2025-03-15

文章信息/Info

Title:
Simulation and Analysis of the Motion of Recycled Fibers in Rotor Spinning Machine
作者:
邵 秋;  龚新霞;  杨瑞华*
江南大学 纺织科学与工程学院,江苏 无锡 214122
Author(s):
SHAO Qiu;  GONG Xinxia;  YANG Ruihua*
College of Textile Science and Engineering,Jiangnan University,Wuxi 214122,China
分类号:
TS 104.7
文献标志码:
A
摘要:
循环再生纤维长度短、整齐度差,在其转杯纺成纱过程中经常出现断头或难以接头的现象。为研究循环再生纤维成纱困难的原因,探究其在转杯纺成纱器关键部件中的运动规律,借助数值模拟软件Rocky DEM 2022R1和ANSYS Fluent 2022R1模拟两种不同长度(9.5和16.0 mm)的循环再生纤维多根连续进入凝聚槽后的运动规律,并与原棉纤维(28.0 mm)在转杯凝聚槽内的运动规律进行对比。结果表明:循环再生纤维和原棉纤维的纤维流在转杯纺成纱器内具有相同的运动趋势。相较于16.0和28.0 mm的纤维,9.5 mm的循环再生纤维最易受到高速纤维流的影响; 从输纤通道进入转杯,9.5 mm单根纤维和纤维流均拥有最快的运动速度。纤维在凝聚槽中会形成纤维环,环上的大部分纤维呈伸直状态,部分弯钩纤维会形成圈结; 其中28.0 mm原棉纤维环上的圈结数量最少、圈结集聚程度最低、单根纤维运动最均匀。
Abstract:
The recycled fiber is short in length and poor in uniformity, and it is often broken or difficult to join during the spinning process. In order to investigate the reasons for the difficulty in spinning recycled fibers and explore their motion patterns in key components of the rotor spinning machine, this paper used numerical simulation software Rocky DEM 2022R1 and ANSYS Fluent 2022R1 to simulate the motion patterns of two kinds of recycled fibers of different lengths(9.5 and 16.0 mm)after multiple fibers entered the coagulation tank continuously, compared them with those of raw cotton fibers(28.0 mm)in rotor coagulation tank. The results indicate that both recycled fibers and raw cotton fibers exhibit the same movement trend in rotor spinning machine. Compared to 16.0 and 28.0 mm fibers, 9.5 mm recycled fibers are more susceptible to high-speed fiber flow. Upon entering the rotor through the fiber transport channel, both individual 9.5 mm recycled fibers and their collective flow demonstrate highest movement speed. These fibers tend to form rings in the condensing groove, while most fibers remain straight, some hooked fibers may form loops. Among them, the fiber ring of 28.0 mm raw cotton has the least number of loops, the lowest degree of loop aggregation, and the most smooth movement of a single fiber.

参考文献/References:

[1] YURTASLAN O, KURTOGLU S A, YILMAZ D. Closed-loop mechanical recycling opportunities in industrial cotton wastes[J]. Journal of Natural Fibers, 2019, 19(15): 10802-10817.
[2] 吴琦萍, 范海芳, 刘倩丽. 循环再生棉纱生产技术及其产品适应性研究[J]. 棉纺织技术, 2020, 48(8): 51-54.
WU Qiping, FAN Haifang, LIU Qianli. Research on production technology and product adaptability of recycled regenerated cotton yarn[J]. Cotton Textile Technology, 2020, 48(8): 51-54.(in Chinese)
[3] 杨瑞华, 邵秋, 张欣, 等. 废旧涤棉纺织品的回收循环再利用技术[J]. 服装学报, 2022, 7(4): 283-290.
YANG Ruihua, SHAO Qiu, ZHANG Xin, et al. Recycling and reuse technology of waste polyester and cotton textiles[J]. Journal of Clothing Research, 2022, 7(4): 283-290.(in Chinese)
[4] 杨瑞华,王 卓.基于Friele模型的转杯纺黏胶混色针织物测配色系统[J].服装学报,2023,8(1):31-36.
YANG Ruihua, WANG Zhuo. Color matching model of viscose color blended fabric based on Friele model[J]. Journal of Clothing Research, 2023, 8(1): 31-36.(in Chinese)
[5] SCHMID C F, SWITZER L H, KLINGENBERG D J. Simulations of fiber flocculation: effects of fiber properties and interfiber friction[J]. Journal of Rheology, 2000, 44(4): 781-809.
[6] KARIMI H, MOLAEI DEHKORDI A. Prediction of equilibrium mixing state in binary particle spouted beds: effects of solids density and diameter differences, gas velocity, and bed aspect ratio[J]. Advanced Powder Technology, 2015, 26(5): 1371-1382.
[7] MARHEINEKE N, WEGENER R. Modeling and application of a stochastic drag for fibers in turbulent flows[J]. International Journal of Multiphase Flow, 2011, 37(2): 136-148.
[8] 杨瑞华, 何闯. 纤维在转杯和输纤通道中的运动模拟[J]. 丝绸, 2022, 59(7): 40- 48.
YANG Ruihua, HE Chuang. Simulation of fiber movement in the rotor and fiber transport channel[J]. Journal of Silk, 2022, 59(7): 40- 48.(in Chinese)
PEI Z G, ZHANG Y, ZHOU J. A model for the particle-level simulation of multiple flexible fibers moving in a wall-bounded fluid flow[J]. Journal of Fluids and Structures, 2018, 80: 37-58.
[10] 邓茜茜, 杨瑞华. 输棉通道位置对转杯纺纤维运动的影响[J]. 丝绸, 2020, 57(8): 42- 49.
DENG Qianqian, YANG Ruihua. Effect of fiber transport channel position on fiber motion in rotor spinning[J]. Journal of Silk, 2020, 57(8): 42- 49.(in Chinese)
[11] 林惠婷, 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(2): 55- 61.
LIN Huiting, WANG Jun. Simulation on fiber motion in airflow field of transfer channel[J]. Journal of Textile Research, 2018, 39(2): 55- 61.(in Chinese)
[12] 熊海浪. 纤维在旋转气流场中的耦合运动机理研究[D]. 杭州: 浙江理工大学, 2022.
[13] YANG R H, HE C, PAN B, et al. Effect of position of the fiber transport channel on fiber motion in the high-speed rotor[J]. Textile Research Journal, 2021, 91(19/20): 2294-2302.
[14] 何闯. 转杯纺纱通道中气流数值模拟及纤维运动特性研究[D]. 无锡: 江南大学, 2021.
[15] 徐惠君, 张志, 粟宝华, 等. 转杯纺纱纤维流运动及纺纱不匀性的技术分析[J]. 现代纺织技术, 2013, 21(2): 5-11.
XU Huijun, ZHANG Zhi, SU Baohua, et al. Technical analysis of rotor spinning fiber flow movement and yarn irregularity[J]. Advanced Textile Technology, 2013, 21(2): 5-11.(in Chinese)
[16] 中华人民共和国国家发展和改革委员会. 纺织品纤维含量的测定物理法: FZ/T 01101—2008[S]. 北京: 中国标准出版社, 2008.
[17] 上海纺织控股(集团)公司, 《棉纺手册》(第3版)编委会. 棉纺手册[M]. 3版. 北京: 中国纺织出版社, 2004: 68.
[18] 张曙光, 胡学梅, 吴佩云. 浅析影响细纱机牵伸效率的主要因素[J]. 北京纺织, 2003(4): 18-19, 39.
ZHANG Shuguang, HU Xuemei, WU Peiyun. Analysis on the main factors affecting the drafting efficiency of spinning frame[J]. Beijing Textile Journal, 2003(4): 18-19, 39.(in Chinese)
[19] 张弘强. 纱条中纤维形态及排列对条干不匀的影响[D]. 上海: 东华大学, 2016.
[20] 龚新霞, 杨瑞华. 弯钩纤维在转杯纺纱器内的运动模拟与形态分析[J]. 现代纺织技术, 2024, 32(3): 21-28.
GONG Xinxia, YANG Ruihua. Motion simulation and morphological analysis of hooked fibers in a rotor spinner[J]. Advanced Textile Technology, 2024, 32(3): 21-28.(in Chinese)
(责任编辑:沈天琦)

更新日期/Last Update: 2025-02-28