[1]李红彦,薛萧昱,张 丹,等.高温带电作业屏蔽服内胆织物优选及工效验证[J].服装学报,2024,9(06):500-506.
 LI Hongyan,XUE Xiaoyu,ZHANG Dan,et al.Optimization and Performance Validation of Inner Lining Fabric for High-Temperature Live-Working Shielding Suit[J].Journal of Clothing Research,2024,9(06):500-506.
点击复制

高温带电作业屏蔽服内胆织物优选及工效验证()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年06期
页码:
500-506
栏目:
功能服装
出版日期:
2025-01-01

文章信息/Info

Title:
Optimization and Performance Validation of Inner Lining Fabric for High-Temperature Live-Working Shielding Suit
作者:
李红彦1;  薛萧昱2;  张 丹1;  王 敏*2;  高 阳1
1. 国网吉林省电力有限公司 电力科学研究院,吉林 长春 130021; 2. 东华大学 服装与艺术设计学院,上海 200051
Author(s):
LI Hongyan1;  XUE Xiaoyu2;  ZHANG Dan1;  WANG Min*2;  GAO Yang1
1. Electric Power Research Institute, State Grid Jilin Electric Power Co., Ltd., Changchun 130021, China; 2. College of Fashion and Design, Donghua University, Shanghai 200051, China
分类号:
TS 941.731
文献标志码:
A
摘要:
针对高温带电作业屏蔽服内胆织物筛选存在主观性和模糊性的问题,引入熵权-秩和比法定量筛选最优织物,以改善屏蔽服的热湿舒适性。选取6款导湿织物为研究对象,采用熵权-秩和比法从导热性能、吸湿速干性能、接触瞬间凉感、动态水分管理能力等方面进行重要度排序与分档,筛选出综合性能最优的织物用于屏蔽服内胆,并通过工效学实验验证研究方法的有效性。结果表明,2#涤丙双层单向导湿织物综合性能最优,适合作为单导区织物。进一步研究发现,增加内胆对屏蔽服整体活动工效性无显著影响; 现役屏蔽服在膝盖和臀部区域的活动工效性有待改进。研究结果验证了熵权-秩和比法在屏蔽服内胆织物优选中的可行性,为后续高温带电作业屏蔽服的研发与优化提供了有效手段。
Abstract:
In response to the subjectivity and ambiguity in selecting inner lining fabrics for high-temperature live-working shielding suits, the entropy weight-rank sum ratio method was introduced to quantitatively select the optimal fabric to improve the thermal and moisture comfort of shielding suits. Six moisture-conducting fabrics were chosen for analysis. Using the entropy weight-rank sum ratio method, fabrics were ranked and categorized based on thermal conductivity, moisture wicking, instant cool touch and dynamic moisture management capabilities. Fabric with the best comprehensive properties was selected for the shielding suit liner, and the effectiveness of the research method was verified by ergonomic experiments. The results indicate that the 2# polyester-polypropylene double-layer unidirectional moisture-conducting fabric performs best, making it suitable as a single-direction moisture-conducting fabric. Further investigation reveals that adding an inner liner has no significant impact on the overall ergonomic performance of the shielding suit. The ergonomic perfor-mance of current shielding suits in areas such as knee and hip requires improvement. These findings confirm the feasibility of the entropy weight-rank sum ratio method for optimizing inner lining fabrics in shielding suits, and provide a reference for further development and enhancement of high-temperature live-working shielding suits.

参考文献/References:

[1] SU Y, WANG X C, LI Y P, et al. Analysis of the conductivity property of live working shielding clothing[J]. Journal of Industrial Textiles, 2018, 48(3): 643- 659.
[2] WANG X C, ZHANG J, HANG G G, et al. Influencing factors of shielding effectiveness test of electromagnetic shielding clothing[J]. Journal of Industrial Textiles, 2022, 52: 1-23.
[3] 李稳, 顾苏, 毛盾, 等. 基于人体体征的作业人员安全预警系统[J]. 中国安全科学学报, 2019, 29(9): 167-172.
LI Wen, GU Su, MAO Dun, et al. Safety early warning system for live working considering body signs[J]. China Safety Science Journal, 2019, 29(9): 167-172.(in Chinese)
[4] 谢鹏, 秦威南, 吕鹏飞, 等. 屏蔽服冷却系统对人体表面温度影响的研究[J]. 中国安全生产科学技术, 2020, 16(11): 159-165.
XIE Peng, QIN Weinan, LYU Pengfei, et al. Research on influence of cooling system in shielding clothing on surface temperature of human body[J]. Journal of Safety Science and Technology, 2020, 16(11): 159-165.(in Chinese)
[5] SARICAM C, ERDUMLU N. Evaluation of regenerated bamboo, polyester and cotton knitted fabrics for summer clothing[J]. Fibres and Textiles in Eastern Europe, 2018, 26(4): 82-89.
[6] MITRA A, MAJUMDAR A, GHOSH A, et al. Selection of handloom fabrics for summer clothing using multi-criteria decision making techniques[J]. Journal of Natural Fibers, 2015, 12(1): 61-71.
[7] MITRA A. Application of multi-objective optimization on the basis of ratio analysis(MOORA)for selection of cotton fabrics for optimal thermal comfort[J]. Research Journal of Textile and Apparel, 2022, 26(2): 187-203.
[8] MITRA A. Selection of cotton fabrics using EDAS method[J]. Journal of Natural Fibers, 2022, 19(7): 2706-2718.
[9] CHAKRABORTY S, CHATTERJEE P. A developed meta-model for selection of cotton fabrics using design of experiments and TOPSIS method[J]. Journal of the Institution of Engineers(India): Series E, 2017, 98(2): 79-90.
[10] YE J, CHEN T Y. Selection of cotton fabrics using Pythagorean fuzzy TOPSIS approach[J]. Journal of Natural Fibers, 2022, 19(14): 9085-9100.
[11] 李慧,宋晓霞.吸湿排汗针织面料设计及热湿舒适性评价[J].服装学报,2022,7(3):196-201.
LI Hui,SONG Xiaoxia.Design of moisture-wicking fabric and thermal and moisture comfort evaluation[J].Journal of Clothing Research,2022,7(3):196-201.(in Chinese)
[12] 姚芳芹,方丽英.运动服用针织面料热湿舒适性能评价[J].服装学报,2022,7(2):101-107.
YAO Fangqin,FANG Liying.Evaluation of thermal and heat-moisture comfort performance of knit sportswear fabric[J].Journal of Clothing Research,2022,7(2):101-107.(in Chinese)
[13] BHATIA D, SINHA S K. Selection of handloom fabrics based on thermo-physiological characteristics using multi- attributes decision making algorithm[J]. Journal of Natural Fibers, 2022, 19(13): 6015- 6030.
[14] 王永荣, 左凯悦, 朱雨桦. 聚酰亚胺针织物热湿舒适性能研究[J]. 针织工业, 2022(7): 21-26.
WANG Yongrong, ZUO Kaiyue, ZHU Yuhua. Study on the thermal-moist comfort property of polyimide knitted fabric[J]. Knitting Industries, 2022(7): 21-26.(in Chinese)
[15] 张建新, 黄钢, 胡旭东. 基于光谱成像技术的织物光泽模糊综合评价[J]. 纺织学报, 2021, 42(6): 106-113.
ZHANG Jianxin, HUANG Gang, HU Xudong. Fuzzy comprehensive evaluation of fabric gloss based on spectral imaging technology[J]. Journal of Textile Research, 2021, 42(6): 106-113.(in Chinese)
[16] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019, 40(2): 105-113.
CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level[J]. Journal of Textile Research, 2019, 40(2): 105-113.(in Chinese)
[17] WANG Y, JIANG Y T, ZHU G X. Spatio-temporal evaluation of multi-scale cultivated land system resilience in black soil region from 2000 to 2019: a case study of Liaoning Province, Northeast China[J]. Chinese Geographical Science, 2024, 34(1): 168-180.
[18] 郑通, 张立杰. 中国服装行业上市企业数字化转型评价[J].丝绸, 2023, 60(9): 1-7.
ZHENG Tong, ZHANG Lijie. Evaluation on digital transformation of listed enterprises in China’s clothing industry[J]. Journal of Silk, 2023, 60(9): 1-7.(in Chinese)
[19] PAN J J, REN S, HUANG X X, et al. Evaluation of policy effectiveness by mathematical modeling for the opioid crisis with spatial study and trend analysis[J]. Healthcare, 2021, 9(5): 585.
[20] XU Y, YANG L, ZHANG C, et al. Comprehensive evaluation of water ecological environment in watersheds: a case study of the Yangtze River Economic Belt, China[J]. Environmental Science and Pollution Research International, 2023, 30(11): 30727-30740.
[21] LU H L, ZHU C X, CAO X, et al. The sustainability evaluation of masks based on the integrated rank sum ratio and entropy weight method[J]. Sustainability, 2022, 14(9): 5706.
[22] LIU X J, SU X Z, SONG J, et al. Research on properties of modified nylon blend yarn and fabric[J]. International Journal of Clothing Science and Technology, 2019, 32(3): 322-337.
[23] HOUSHYAR S, PADHYE R, NAYAK R. Effect of moisture-wicking materials on the physical and thermo-physiological comfort properties of firefighters’ protective clothing[J]. Fibers and Polymers, 2017, 18(2): 383-389.
[24] KIM H A. Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax/bamboo/tencel included PET and PP composite yarns and their woven fabrics[J]. The Journal of the Textile Institute, 2021, 112(12): 1940-1953.
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 调湿和实验用标准大气: GB/T 6529—2008[S]. 北京: 中国标准出版社, 2008.
[26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 生理舒适性 稳态条件下热阻和湿阻的测定: GB/T 11048—2008[S]. 北京: 中国标准出版社, 2008.
[27] 国家市场监督管理总局, 国家标准化管理委员会. 纺织品 吸湿速干性的评定 第1部分: 单项组合试验法: GB/T 21655.1—2023[S]. 北京: 中国标准出版社, 2023.
[28] 国家市场监督管理总局, 中国国家标准化管理委员会. 纺织品 吸湿速干性的评定 第2部分: 动态水分传递法: GB/T 21655.2—2019[S]. 北京: 中国标准出版社, 2019.
[29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 接触瞬间凉感性能的检测和评价: GB/T 35263—2017[S]. 北京: 中国标准出版社, 2017.
[30] 刘亚琼, 李楠, 李雯, 等. 服装结构设计对电磁屏蔽效能的影响[J]. 现代纺织技术, 2022, 30(4): 193-199.
LIU Yaqiong, LI Nan, LI Wen, et al. Influence of clothing structure design on electromagnetic shielding effectiveness[J]. Advanced Textile Technology, 2022, 30(4): 193-199.(in Chinese)
(责任编辑:沈天琦)

更新日期/Last Update: 2024-12-30