参考文献/References:
[1] SU Y, WANG X C, LI Y P, et al. Analysis of the conductivity property of live working shielding clothing[J]. Journal of Industrial Textiles, 2018, 48(3): 643- 659.
[2] WANG X C, ZHANG J, HANG G G, et al. Influencing factors of shielding effectiveness test of electromagnetic shielding clothing[J]. Journal of Industrial Textiles, 2022, 52: 1-23.
[3] 李稳, 顾苏, 毛盾, 等. 基于人体体征的作业人员安全预警系统[J]. 中国安全科学学报, 2019, 29(9): 167-172.
LI Wen, GU Su, MAO Dun, et al. Safety early warning system for live working considering body signs[J]. China Safety Science Journal, 2019, 29(9): 167-172.(in Chinese)
[4] 谢鹏, 秦威南, 吕鹏飞, 等. 屏蔽服冷却系统对人体表面温度影响的研究[J]. 中国安全生产科学技术, 2020, 16(11): 159-165.
XIE Peng, QIN Weinan, LYU Pengfei, et al. Research on influence of cooling system in shielding clothing on surface temperature of human body[J]. Journal of Safety Science and Technology, 2020, 16(11): 159-165.(in Chinese)
[5] SARICAM C, ERDUMLU N. Evaluation of regenerated bamboo, polyester and cotton knitted fabrics for summer clothing[J]. Fibres and Textiles in Eastern Europe, 2018, 26(4): 82-89.
[6] MITRA A, MAJUMDAR A, GHOSH A, et al. Selection of handloom fabrics for summer clothing using multi-criteria decision making techniques[J]. Journal of Natural Fibers, 2015, 12(1): 61-71.
[7] MITRA A. Application of multi-objective optimization on the basis of ratio analysis(MOORA)for selection of cotton fabrics for optimal thermal comfort[J]. Research Journal of Textile and Apparel, 2022, 26(2): 187-203.
[8] MITRA A. Selection of cotton fabrics using EDAS method[J]. Journal of Natural Fibers, 2022, 19(7): 2706-2718.
[9] CHAKRABORTY S, CHATTERJEE P. A developed meta-model for selection of cotton fabrics using design of experiments and TOPSIS method[J]. Journal of the Institution of Engineers(India): Series E, 2017, 98(2): 79-90.
[10] YE J, CHEN T Y. Selection of cotton fabrics using Pythagorean fuzzy TOPSIS approach[J]. Journal of Natural Fibers, 2022, 19(14): 9085-9100.
[11] 李慧,宋晓霞.吸湿排汗针织面料设计及热湿舒适性评价[J].服装学报,2022,7(3):196-201.
LI Hui,SONG Xiaoxia.Design of moisture-wicking fabric and thermal and moisture comfort evaluation[J].Journal of Clothing Research,2022,7(3):196-201.(in Chinese)
[12] 姚芳芹,方丽英.运动服用针织面料热湿舒适性能评价[J].服装学报,2022,7(2):101-107.
YAO Fangqin,FANG Liying.Evaluation of thermal and heat-moisture comfort performance of knit sportswear fabric[J].Journal of Clothing Research,2022,7(2):101-107.(in Chinese)
[13] BHATIA D, SINHA S K. Selection of handloom fabrics based on thermo-physiological characteristics using multi- attributes decision making algorithm[J]. Journal of Natural Fibers, 2022, 19(13): 6015- 6030.
[14] 王永荣, 左凯悦, 朱雨桦. 聚酰亚胺针织物热湿舒适性能研究[J]. 针织工业, 2022(7): 21-26.
WANG Yongrong, ZUO Kaiyue, ZHU Yuhua. Study on the thermal-moist comfort property of polyimide knitted fabric[J]. Knitting Industries, 2022(7): 21-26.(in Chinese)
[15] 张建新, 黄钢, 胡旭东. 基于光谱成像技术的织物光泽模糊综合评价[J]. 纺织学报, 2021, 42(6): 106-113.
ZHANG Jianxin, HUANG Gang, HU Xudong. Fuzzy comprehensive evaluation of fabric gloss based on spectral imaging technology[J]. Journal of Textile Research, 2021, 42(6): 106-113.(in Chinese)
[16] 楚鑫鑫, 肖红, 范杰. 织物凉感等级的主客观评价及确定[J]. 纺织学报, 2019, 40(2): 105-113.
CHU Xinxin, XIAO Hong, FAN Jie. Using fuzzy comprehensive evaluation method to classify fabrics for coolness level[J]. Journal of Textile Research, 2019, 40(2): 105-113.(in Chinese)
[17] WANG Y, JIANG Y T, ZHU G X. Spatio-temporal evaluation of multi-scale cultivated land system resilience in black soil region from 2000 to 2019: a case study of Liaoning Province, Northeast China[J]. Chinese Geographical Science, 2024, 34(1): 168-180.
[18] 郑通, 张立杰. 中国服装行业上市企业数字化转型评价[J].丝绸, 2023, 60(9): 1-7.
ZHENG Tong, ZHANG Lijie. Evaluation on digital transformation of listed enterprises in China’s clothing industry[J]. Journal of Silk, 2023, 60(9): 1-7.(in Chinese)
[19] PAN J J, REN S, HUANG X X, et al. Evaluation of policy effectiveness by mathematical modeling for the opioid crisis with spatial study and trend analysis[J]. Healthcare, 2021, 9(5): 585.
[20] XU Y, YANG L, ZHANG C, et al. Comprehensive evaluation of water ecological environment in watersheds: a case study of the Yangtze River Economic Belt, China[J]. Environmental Science and Pollution Research International, 2023, 30(11): 30727-30740.
[21] LU H L, ZHU C X, CAO X, et al. The sustainability evaluation of masks based on the integrated rank sum ratio and entropy weight method[J]. Sustainability, 2022, 14(9): 5706.
[22] LIU X J, SU X Z, SONG J, et al. Research on properties of modified nylon blend yarn and fabric[J]. International Journal of Clothing Science and Technology, 2019, 32(3): 322-337.
[23] HOUSHYAR S, PADHYE R, NAYAK R. Effect of moisture-wicking materials on the physical and thermo-physiological comfort properties of firefighters’ protective clothing[J]. Fibers and Polymers, 2017, 18(2): 383-389.
[24] KIM H A. Water/moisture vapor permeabilities and thermal wear comfort of the Coolmax/bamboo/tencel included PET and PP composite yarns and their woven fabrics[J]. The Journal of the Textile Institute, 2021, 112(12): 1940-1953.
[25] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 调湿和实验用标准大气: GB/T 6529—2008[S]. 北京: 中国标准出版社, 2008.
[26] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 生理舒适性 稳态条件下热阻和湿阻的测定: GB/T 11048—2008[S]. 北京: 中国标准出版社, 2008.
[27] 国家市场监督管理总局, 国家标准化管理委员会. 纺织品 吸湿速干性的评定 第1部分: 单项组合试验法: GB/T 21655.1—2023[S]. 北京: 中国标准出版社, 2023.
[28] 国家市场监督管理总局, 中国国家标准化管理委员会. 纺织品 吸湿速干性的评定 第2部分: 动态水分传递法: GB/T 21655.2—2019[S]. 北京: 中国标准出版社, 2019.
[29] 中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 纺织品 接触瞬间凉感性能的检测和评价: GB/T 35263—2017[S]. 北京: 中国标准出版社, 2017.
[30] 刘亚琼, 李楠, 李雯, 等. 服装结构设计对电磁屏蔽效能的影响[J]. 现代纺织技术, 2022, 30(4): 193-199.
LIU Yaqiong, LI Nan, LI Wen, et al. Influence of clothing structure design on electromagnetic shielding effectiveness[J]. Advanced Textile Technology, 2022, 30(4): 193-199.(in Chinese)
(责任编辑:沈天琦)