[1]李艳梅,罗 莹.基于CiteSpace的国内外织物柔性传感器研究的可视化分析[J].服装学报,2024,9(05):448-455.
 LI Yanmei,LUO Ying.Visual Analysis of Domestic and International Research on Textile Flexible Sensors Based on CiteSpace[J].Journal of Clothing Research,2024,9(05):448-455.
点击复制

基于CiteSpace的国内外织物柔性传感器研究的可视化分析()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年05期
页码:
448-455
栏目:
柔性传感器专题
出版日期:
2024-11-01

文章信息/Info

Title:
Visual Analysis of Domestic and International Research on Textile Flexible Sensors Based on CiteSpace
作者:
李艳梅;  罗 莹
上海工程技术大学 纺织服装学院,上海 201620
Author(s):
LI Yanmei;  LUO Ying
Textile and Clothing College,Shanghai University of Engineering Science,Shanghai 201620,China
分类号:
TP 212; TS 106
文献标志码:
A
摘要:
针对国内外织物柔性传感器的研究现状,在中国知识资源总库和科技文献数据库检索织物柔性传感器相关文献,导出中文文献1 141篇,英文文献9 573篇。通过CiteSpace绘制织物柔性传感器的可视化知识图谱,分析国内外年发文量,国家、机构、作者合作网络分布,高被引文献分布,高频关键词,突现热点词等数据,对比国内外研究现状和趋势,为未来织物柔性传感器的研究提供量化数据支撑。研究表明,近年来国内外织物柔性传感器文献数量整体呈增长趋势,但国内发文量在2023年有所下降,且文章影响力不及美国; 国内纺织领域学者正面临着新的挑战,亟须跨学科、跨领域的深度合作。
Abstract:
In response to the current research status of textile flexible sensors at home and abroad, this paper conducted a literature search on relevant texts in the China National Knowledge Infrastructure and the Web of Science Database. A total of 1 141 Chinese articles and 9 573 English articles were extracted. A visual knowledge map of textile flexible sensors was drawn using CiteSpace to analyze the annual publication volume, distribution of countries, institutions, authors, highly cited articles, high-frequency keywords, and emerging hot words. The study compared the current research status and trends at home and abroad, providing quantitative data support for future research on textile flexible sensors. The results show that the number of textile flexible sensor-related articles at home and abroad as a whole has increased in recent years, but the domestic publication volume will decline in 2023, and the influence of articles is less than that of the United States. Chinese textile scholars are facing new challenges and urgently need cross-disciplinary and cross-sectoral in-depth cooperation.

参考文献/References:

[1] 国家发展和改革委员会.产业结构调整指导目录(2024年本)[EB/OL].(2023-12-27)[2024-03-07]. https://zfxxgk.ndrc.gov.cn/web/iteminfo.jsp?id=20305.
[2] 深圳市人民政府发展研究中心. 深圳市关于推动智能传感器产业加快发展的若干措施[EB/OL].(2022-12-26)[2024-03-07]. http://drc.sz.gov.cn/ydd/xxgk/zcwj/zcfg/content/post_10562853.html.
[3] 李万军, 王紫怡, 周梦烨, 等. 基于文献计量图谱的国内外智能纤维研究现状及趋势[J]. 丝绸, 2023, 60(11): 39-49.
LI Wanjun, WANG Ziyi, ZHOU Mengye, et al. Research status and trend of intelligent fibers at home and abroad based on bibliometric atlas[J]. Journal of Silk, 2023, 60(11): 39-49.(in Chinese)
[4] 张朋莉, 刘皓, 王探宇. 织物基柔性传感器研究进展[J]. 针织工业, 2022(12): 81-85.
ZHANG Pengli, LIU Hao, WANG Tanyu. Research progress of fabric-based flexible sensors[J]. Knitting Industries, 2022(12): 81-85.(in Chinese)
[5] 林坪坪, 刘秀玲. 中国纺织技术研发重点与热点[J]. 针织工业, 2017(10): 69-74.
LIN Pingping, LIU Xiuling. Key points and hotspots of China’s textile technology research and development[J]. Knitting Industries, 2017(10): 69-74.(in Chinese)
[6] 赵元轩. 可穿戴智能产品设计发展趋势探究[D]. 北京: 北京理工大学, 2015.
[7] 沈雷, 李仪, 薛哲彬. 智能服装现状研究及发展趋势[J]. 丝绸, 2017, 54(7): 38-45.
SHEN Lei, LI Yi, XUE Zhebin. Current situation and development trend of intelligent garment[J]. Journal of Silk, 2017, 54(7): 38-45.(in Chinese)
[8] 杜敏芝, 田明伟, 曲丽君. 二氧化锰石墨烯整理棉织物的电热及传感性能研究[J]. 棉纺织技术, 2016, 44(12): 25-29.
DU Minzhi, TIAN Mingwei, QU Lijun. Electroheat and sensing property study on MnO2 graphene finished cotton fabric[J]. Cotton Textile Technology, 2016, 44(12): 25-29.(in Chinese)
[9] 房翔敏, 曲丽君, 田明伟. 自供电纺织基柔性应变传感器研究进展[J]. 丝绸, 2022, 59(8): 36-47.
FANG Xiangmin, QU Lijun, TIAN Mingwei. Research progress of self-powered textile-based flexible stress sensors[J]. Journal of Silk, 2022, 59(8): 36-47.(in Chinese)
[10] 刘皓, 陈婷婷, 赵利端, 等. 聚吡咯涂层织物的研究进展[J]. 纺织导报, 2018(3): 64-67.
LIU Hao, CHEN Tingting, ZHAO Liduan, et al. Research progress on the fabric with PPy-coating[J]. China Textile Leader, 2018(3): 64-67.(in Chinese)
[11] 王晓雷, 缪旭红, 李煜天, 等. 导电纱线在针织柔性应变传感器上的应用进展[J]. 毛纺科技, 2019, 47(3): 81-84.
WANG Xiaolei, MIAO Xuhong, LI Yutian, et al. Progress in application of conductive yarns to knitted flexible strain sensors[J]. Wool Textile Journal, 2019, 47(3): 81-84.(in Chinese)
[12] 王金凤, 龙海如. 线圈转移对导电弹性针织柔性传感器的电-力学性能影响[J]. 纺织学报, 2013, 34(7): 62-68.
WANG Jinfeng, LONG Hairu. Effect of loop transfer on electro-mechanical properties of conductive elastic wearable knitted sensors[J]. Journal of Textile Research, 2013, 34(7): 62-68.(in Chinese)
[13] LIU Z G, YIN Y M, LIU W D, et al. Visualizing the intellectual structure and evolution of innovation systems research: a bibliometric analysis[J]. Scientometrics, 2015, 103(1): 135-158.
[14] GAO W, EMAMINEJAD S, NYEIN H Y Y, et al. Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis[J]. Nature, 2016, 529(7587): 509-514.
[15] AMJADI M, KYUNG K U, PARK I, et al. Stretchable, skin-mountable, and wearable strain sensors and their potential applications: a review[J]. Advanced Functional Materials, 2016, 26(11): 1678-1698.
[16] TRUNG T Q, LEE N E. Flexible and stretchable physical sensor integrated platforms for wearable human-activity monitoringand personal healthcare[J].Advanced Materials, 2016, 28(22): 4338-4372.
[17] 丁士宁, 张克旺. 基于CNKI的CiteSpace应用可视化分析[J]. 现代信息科技, 2023, 7(6): 124-127, 131.
DING Shining, ZHANG Kewang. Visualization analysis of CiteSpace application based on CNKI[J]. Modern Information Technology, 2023, 7(6): 124-127, 131.(in Chinese)
[18] 王晓雷, 缪旭红, 孙婉. 针织间隔导电织物的压力电阻传感性能[J]. 丝绸, 2020, 57(4): 17-21.
WANG Xiaolei, MIAO Xuhong, SUN Wan. Pressure resistance sensing properties of knitted spacer conductive fabrics[J]. Journal of Silk, 2020, 57(4): 17-21.(in Chinese)
[19] 李伊梦, 侯晓娟, 张辽原, 等. 石墨烯/PDMS仿生银杏叶微结构柔性压阻式压力传感器[J]. 微纳电子技术, 2020, 57(3): 198-203.
LI Yimeng, HOU Xiaojuan, ZHANG Liaoyuan, et al. Graphene/PDMS biomimetic ginkgo leaf microstructure flexible piezoresistive pressure sensor[J]. Micronanoelectronic Technology, 2020, 57(3): 198-203.(in Chinese)
[20] 付如民. 基于丙烯腈柔性压电材料的制备及其在可穿戴传感器上的应用[D]. 广州: 华南理工大学, 2019.
[21] 杜青, 李刚, 胡杰, 等. 基于C-PDMS介质层的柔性电容式传感器研究[J]. 仪表技术与传感器, 2019(2): 1-3, 8.
DU Qing, LI Gang, HU Jie, et al. Flexible capacitive sensor based on C-PDMS composites as dielectric layer[J]. Instrument Technique and Sensor, 2019(2): 1-3, 8.(in Chinese)
[22] J A S, S E F, B S S, et al. Bio-compatible piezoelectric material based wearable pressure sensor for smart textiles[J]. Smart Material Structures, 2022, 31(12): 125015.
[23] RAJANNA R R, SRIRAAM N, VITTAL P R, et al. Performance evaluation of woven conductive dry textile electrodes for continuous ECG signals acquisition[J]. IEEE Sensors Journal, 2020, 20(3): 1573-1581.
[24] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177.
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177.(in Chinese)
[25] 胡锦健, 李龙, 董子靖. 碳纳米材料在PU纱线基柔性应变传感器中的应用[J]. 化工进展, 2023, 42(2): 872-883.
HU Jinjian, LI Long, DONG Zijing. Application of carbon nanomaterials in PU yarn-based flexible strain sensors[J]. Chemical Industry and Engineering Progress, 2023, 42(2): 872-883.(in Chinese)
[26] 范梦晶, 吴玲娅, 周歆如, 等. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
FAN Mengjing, WU Lingya, ZHOU Xinru, et al. Construction of capacitive sensor based on silver coated polyamide 6/polyamide 6 nanofiber core-spun yarn[J]. Journal of Textile Research, 2023, 44(11): 67-73.(in Chinese)
[27] 穆琪琪. 基于有机半导体的柔性温度传感器有源层设计及优化[D]. 柳州: 广西科技大学, 2023.
[28] LI Z H, XU K, PAN Y S. Recent development of supercapacitor electrode based on carbon materials[J]. Nanotechnology Reviews, 2019, 8(1): 35-49.
[29] 何晓霞, 宋向荣, 宋慎群, 等. 碳纳米管材料在服装行业的应用[J]. 化纤与纺织技术, 2022, 51(1): 18-20.
HE Xiaoxia, SONG Xiangrong, SONG Shenqun, et al. Application of carbon nanotubes in clothing industry[J]. Chemical Fiber and Textile Technology, 2022, 51(1): 18-20.(in Chinese)
[30] 吕玉环. 基于石墨烯和MXene的活性层结构设计与压阻性能研究[D]. 北京: 北京化工大学, 2023.
[31] 赵连家. 聚合物/MXene复合材料制备及其柔性传感性能研究[D]. 长春: 吉林大学, 2023.
[32] 张凡, 胡钦南, 宋玲玲, 等. 可拉伸、自修复Janus水凝胶薄膜用于柔性传感器的研究[J]. 现代化工, 2023, 43(10): 160-166, 173.
ZHANG Fan, HU Qinnan, SONG Lingling, et al. Stretchable, self-healing Janus hydrogel film for flexible sensors[J]. Modern Chemical Industry, 2023, 43(10): 160-166, 173.(in Chinese)
[33] 白龙,金勇,商翔,等.胶原基离子水凝胶的制备及其在传感领域的应用研究[J].皮革科学与工程,2022,32(5):1-5.
BAI Long,JIN Yong,SHANG Xiang,et al.Preparation of collagen-based ionic hydrogel and its application in sensing field[J].Leather Science and Engineering,2022,32(5):1-5.(in Chinese)
[34] 王凤鸣. 基于二维MoS2的柔性应力传感器构建、改性以及应用研究[D]. 江门: 五邑大学, 2023.
[35] 刘皓, 李斌, 罗丹, 等. 可监测动脉血压波形的超声阵列柔性传感器[J]. 天津工业大学学报, 2023, 42(6): 74-83.
LIU Hao, LI Bin, LUO Dan, et al. Ultrasonic array flexible sensor for monitoring arterial blood pressure waveform[J]. Journal of Tiangong University, 2023, 42(6): 74-83.(in Chinese)
[36] 董泽宇, 沙东勇, 凌小峰. 一种无电池自供能的无线手势识别智能手套的实现[J]. 仪表技术与传感器, 2023(8): 49-55, 119.
DONG Zeyu, SHA Dongyong, LING Xiaofeng. Implementation of battery free self-powered wireless gesture recognition intelligent glove[J]. Instrument Technique and Sensor, 2023(8): 49-55, 119.(in Chinese)
[37] 王金凤, 龙海如. 基于导电纤维针织物的柔性传感器研究[J]. 纺织导报, 2011(5): 76-79.
WANG Jinfeng, LONG Hairu. Research on flexible sensors based on knitted fabric with conductive fiber[J]. China Textile Leader, 2011(5): 76-79.(in Chinese)
(责任编辑:张 雪)

相似文献/References:

[1]刘书轶,丰 翔,邱笑笑,等.纺织服装产品生命周期评价研究文献计量分析[J].服装学报,2021,6(03):208.
 LIU Shuyi,FENG Xiang,QIU Xiaoxiao,et al.Bibliometric Analysis of Research Literature on Life Cycle Assessment of Textile and Clothing[J].Journal of Clothing Research,2021,6(05):208.

更新日期/Last Update: 2024-10-30