[1]洪 岩,龙廷梅,刘小青,等.情感计算在服装智能研发中的应用[J].服装学报,2024,9(05):384-395.
 HONG Yan,LONG Tingmei,LIU Xiaoqing,et al.Application of Emotional Computing in the Research and Development of Clothing Intelligence[J].Journal of Clothing Research,2024,9(05):384-395.
点击复制

情感计算在服装智能研发中的应用()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年05期
页码:
384-395
栏目:
服装智造
出版日期:
2024-11-01

文章信息/Info

Title:
Application of Emotional Computing in the Research and Development of Clothing Intelligence
作者:
洪 岩1; 2;  龙廷梅1;  刘小青1;  王博雅1
1. 苏州大学 纺织与服装工程学院,江苏 苏州 215021; 2. 香港理工大学 计算机科学系,香港 999077
Author(s):
HONG Yan1; 2;  LONG Tingmei1;  LIU Xiaoqing1;  WANG Boya1
1. College of Textile and Clothing Engineering, Soochow University, Suzhou 215021, China; 2. Department of Computing, The Hong Kong Polytechnic University, Hong Kong 999077, China
分类号:
TS 941.2
文献标志码:
A
摘要:
将人工智能、3D等技术应用于服装,有助于精准把握客户需求,但目前设计师依旧无法获取用户的隐性需求。在此背景下,情感计算成为推动服装智能研发的重要力量。通过介绍情感计算在服装智能研发中的应用场景和相关技术,分析其未来研究前景。研究认为,尽管情感计算在服装智能研发中已经展现出潜力,但相关技术仍需进一步完善以满足不断增长的个性化需求,为用户带来更优质丰富的体验。
Abstract:
The application of artificial intelligence, 3D and other technologies to clothing helps to accurately grasp the needs of customers. However, designers are still unable to obtain the hidden needs of users. In this context, emotional computing has become an important force to promote the research and development of clothing intelligence. This paper introduced the application scenarios and related technologies of emotional computing in the research and development of clothing intelligence, and analyzed its future research prospects. The study believes that although emotional computing has shown potential in the research and development of clothing intelligence, the relevant technology still needs to be further improved to meet the growing personalized needs and bring users a better and richer experience.

参考文献/References:

[1] WANG X Y, XUE Y F, ZHANG J, et al. A sustainable supply chain design for personalized customization in industry 5.0 era[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8786-8797.
[2] CUC S, TRIPA S.Redesign and upcycling—a solution for the competitiveness of small and medium-sized enterprises in the clothing industry[J]. Industria Textile, 2018, 69(1): 31-36.
[3] FU H J, MENG J Y, CHEN Y M, et al. Enhancing the effectiveness of cause-related marketing: visual style, self-construal, and consumer responses[J]. Sustainability, 2023, 15(18): 13379.
[4] DE DIVITIIS L, BECATTINI F, BAECCHI C, et al. Disentangling features for fashion recommendation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(Sup.1): 1-21.
[5] BECATTINI F, DE DIVITIIS L, BAECCHI C, et al. Fashion recommendation based on style and social events[J]. Multimedia Tools and Applications, 2023, 82(24): 38217-38232.
[6] ZHOU X X, XU Y H. Conjoint analysis of consumer preferences for dress design[J]. International Journal of Clothing Science and Technology, 2019, 32(1): 73-84.
[7] YUE X D, ZHANG C, FUJITA H, et al. Clothing fashion style recognition with design issue graph[J]. Applied Intelligence, 2021, 51(6): 3548-3560.
[8] LI W Q, XU B G. Aspect-based fashion recommendation with attention mechanism[J]. IEEE Access, 2020(8): 141814-141823.
[9] KUMAR S. Deep learning based affective computing[J]. Journal of Enterprise Information Management, 2021, 34(5): 1551-1575.
[10] YU H T, CHEN X Y, HUANG R B, et al. Untrained deep learning-based phase retrieval for fringe projection profilometry[J]. Optics and Lasers in Engineering, 2023, 164: 107483.
[11] MO S W, LU P, LIU X Y. AI-generated face image identification with different color space channel combinations[J]. Sensors, 2022, 22(21): 8228.
[12] VINH P C. Special issue on context-aware computing: theory and applications[J]. Concurrency and Computation: Practice and Experience, 2021, 33(2): 1-12.
[13] GUAN C Y, QIN S F, LONG Y. Apparel-based deep learning system design for apparel style recommendation[J]. International Journal of Clothing Science and Technology, 2019, 31(3): 376-389.
[14] 刘红文,王圆圆,黄智高,等.基于消费情感体验的国潮T恤产品魅力属性研究[J].丝绸,2022,59(2):55- 67.
LIU Hongwen, WANG Yuanyuan, HUANG Zhigao, et al. A study on the attractive quality attributes of Guochao T-shirt products based on consumer emotional experience[J].Journal of Silk,2022,59(2):55-67.(in Chinese)
[15] 陈弈菲, 刘驰, 杨萌. 基于情绪测量的文胸结构情感计算研究[J]. 现代纺织技术, 2022, 30(2): 208-215.
CHEN Yifei, LIU Chi, YANG Meng. Research on emotional calculation of bra structure basedon emotional measurement[J]. Advanced Textile Technology, 2022, 30(2): 208-215.(in Chinese)
[16] HAN S S, LIU C M, CHEN K Y, et al. A tourist attraction recommendation model fusing spatial, temporal, and visual embeddings for flickr-geotagged photos[J]. ISPRS International Journal of Geo-Information, 2021, 10(1): 20.
[17] MO D M, ZOU X X, PANG K C, et al. Towards private stylists via personalized compatibility learning[J]. Expert Systems with Applications, 2023, 219: 119632.
[18] BALIM C, ?ZKAN K. Diagnosing fashion outfit compatibility with deep learning techniques[J]. Expert Systems with Applications, 2023, 215: 119305.
[19] LI P, CHEN J H. A model of an e-customized co-design system on garment design[J]. International Journal of Clothing Science and Technology, 2018, 30(5): 628- 640.
[20] CHEN W B, LI J C, SHI H B, et al. An adaptive multi-sensor visual attention model[J]. Neural Computing and Applications, 2022, 34(9): 7241-7252.
[21] VAN KLEEF E, VAN TRIJP H C M, LUNING P. Internal versus external preference analysis: an exploratory study on end-user evaluation[J]. Food Quality and Preference, 2006, 17(5): 387-399.
[22] PEREIRA A M, MOURA J A B, COSTA E B, et al. Customer models for artificial intelligence-based decision support in fashion online retail supply chains[J]. Decision Support Systems, 2022, 158: 113795.
[23] HONG Y, GUO S, ZENG X Y, et al. Human cognition modeling for the metaverse-oriented design system[J]. IEEE Network, 2024(9): 1-10.
[24] DAI X Q, HONG Y. Fabric mechanical parameters for 3D cloth simulation in apparel CAD: a systematic review[J]. Computer-Aided Design, 2024, 167: 103638.
[25] JO J, LEE S, LEE C, et al. Development of fashion product retrieval and recommendations model based on deep learning[J]. Electronics, 2020, 9(3): 508.
[26] PARK S J, KANG C U, BYUN Y. Extreme gradient boosting for recommendation system by transforming product classification into regression based on multi-dimensional Word2Vec[J]. Symmetry-Basel, 2021, 13(5): 16.
[27] SEBALD A K, JACOB F. What help do you need for your fashion shopping? A typology of curated fashion shoppers based on shopping motivations[J]. European Management Journal, 2020, 38(2): 319-334.
[28] WANG W, FANG Y, NAGAI Y, et al. Integrating interactive clothing and cyber-physical systems: a humanistic design perspective[J]. Sensors(Basel, Switzerland), 2019, 20(1): 127.
[29] BELLINI P, PALESI L A I, NESI P, et al. Multi clustering recommendation system for fashion retail[J]. Multimedia Tools and Applications, 2023, 82(7): 9989-10016.
[30] MO X H, SUN E L, YANG X. Consumer visual attention and behaviour of online clothing[J]. International Journal of Clothing Science and Technology, 2021, 33(3): 305-320.
[31] ZOU Y X, WANG Y, LUH D B. Application and parametric design of line visual illusion graphics in clothing[J]. Fibres and Textiles in Eastern Europe, 2023, 31(2): 65-74.
[32] WANG S Y, QIU J T. A deep neural network model for fashion collocation recommendation using side information in e-commerce[J]. Applied Soft Computing, 2021, 110: 107753.
[33] ZHAO L H, LIU S L, ZHAO X M. Big data and digital design models for fashion design[J]. Journal of Engineered Fibers and Fabrics, 2021(16): 1-8.
[34] RAAD H, RASHID F K M. The metaverse: applications, concerns, technical challenges, future directions and recommendations[J]. IEEE Access, 2023(11): 850-861.
[35] HAN C, LEI S, ZHANG S,et al. Man-algorithm cooperation intelligent design of clothing products in multi links[J]. Fibres and Textiles in Eastern Europe, 2022, 30(1): 59- 66.
[36] IROVAN M. Digital methods in the development of adaptive clothing for people with disabilities[J]. Industria Textile, 2023, 74(1): 28-34.
[37] ABUGABAH A, CHENG X C, WANG J F. Learning context-aware outfit recommendation[J]. Symmetry, 2020, 12(6): 873.
[38] SCHERER K R. Emotion and emotional competence: conceptual and theoretical issues for modelling agents[J]. Series in Affective Science, 2010(1): 3-20.
[39] MEKRUKSAVANICH S, JITPATTANAKUL A. Deep convolutional neural network with RNNs for complex activity recognition using wrist-worn wearable sensor data[J]. Electronics, 2021, 10(14): 1685.
[40] SCHULLER S B W. A review on five recent and near-future developments in computational processing of emotion in the human voice[J]. Emotion Review, 2021, 13(1): 44-50.
[41] NOROOZI F. Survey on emotional body gesture recognition[J]. Journal of IEEE Transactions on Affective Computing, 2021, 12(2): 505-523.
[42] ERIC O, GYENING R M O M, APPIAH O, et al. Cocoa beans classification using enhanced image feature extraction techniques and a regularized Artificial Neural Network model[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106736.
[43] RAHMAN A B S, TA H T, NAJJAR L, et al. DepressionEmo: a novel dataset for multilabel classification of depression emotions[J]. Journal of Affective Disorders, 2024, 366: 445- 458.
[44] EKMAN P. Emotions revealed: recognizing faces and feelings to improve communication and emotional life[M]. New York: Times Books, 2003.
[45] BOTA P J, WANG C, FRED A L N, et al. A review, current challenges, and future possibilities on emotion recognition using machine learning and physiological signals[J]. IEEE Access, 2020(7): 140990-141020.
[46] GARCIA-MARTINEZ B, MARTINEZ-RODRIGO A, ALCARAZ R, et al. A review on nonlinear methods using electroencephalographic recordings for emotion recognition[J]. IEEE Transactions on Affective Computing, 2021, 12(3): 801-820.
[47] ALARC?O S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE Transactions on Affective Computing, 2019, 10(3): 374-393.
[48] ALOM M Z, TAHA T, YAKOPCIC C, et al. The history began from AlexNet: a comprehensive survey on deep learning approaches[J]. ArXiv, 2018: 1-39.
[49] TAO J H, GU Y H, SUN J Z, et al. Research on vgg16 convolutional neural network feature classification algorithm based on transfer learning[C]//2021 2nd China International SAR Symposium. Shanghai: IEEE, 2021: 1-3.
[50] YIN R C, LI P, WANG B. Sentiment lexical-augmented convolutional neural networks for sentiment analysis[C]//2017 IEEE Second International Conference on Data Science in Cyberspace. Shenzhen: IEEE, 2017: 630- 635.
[51] CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[J]. Computation and Language,2017(1): 1606.
[52] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: Association for Computational Linguistics, 2017: 562-570.
[53] HUANG B X, CARLEY K M. Parameterized convolu-tional neural networks for aspect level sentiment classification[J]. Association for Computational Linguistics, 2018(1): 1091-1096.
[54] 任若安, 杨方超, 孙捷. 设计学视角下的数字时尚发展与逻辑[J]. 服装学报, 2024, 9(2): 127-136.
REN Ruo’an, YANG Fangchao, SUN Jie. Development and logic of digital fashion from a design perspective[J]. Journal of Clothing Research, 2024, 9(2): 127-136.(in Chinese)
[55] MALHI U S, ZHOU J F, YAN C R, et al. Unsupervised deep embedded clustering for high-dimensional visual features of fashion images[J]. Applied Sciences, 2023, 13(5): 2828.
[56] WANG Y Z, LIU L, FU X D, et al. MCCP: multi-modal fashion compatibility and conditional preference model for personalized clothing recommendation[J]. Multimedia Tools and Applications, 2024, 83(4): 9621-9645.
[57] 顾冰菲, 张健, 徐凯忆, 等. 基于聚类和形态参数的人体体型分析研究进展[J]. 服装学报, 2023, 8(4): 307-314.
GU Bingfei, ZHANG Jian, XU Kaiyi, et al. Research progress of human body shape analysis based on clustering and morphological parameters[J]. Journal of Clothing Research, 2023, 8(4): 307-314.(in Chinese)
[58] HONG Y, XUE Z B, LIU C Y, et al. Development of mask design knowledge base based on sensory evaluation and fuzzy logic[J]. Autex Research Journal, 2021, 21(2): 224-230.
(责任编辑:沈天琦)

更新日期/Last Update: 2024-10-30