参考文献/References:
[1] WANG X Y, XUE Y F, ZHANG J, et al. A sustainable supply chain design for personalized customization in industry 5.0 era[J]. IEEE Transactions on Industrial Informatics, 2024, 20(6): 8786-8797.
[2] CUC S, TRIPA S.Redesign and upcycling—a solution for the competitiveness of small and medium-sized enterprises in the clothing industry[J]. Industria Textile, 2018, 69(1): 31-36.
[3] FU H J, MENG J Y, CHEN Y M, et al. Enhancing the effectiveness of cause-related marketing: visual style, self-construal, and consumer responses[J]. Sustainability, 2023, 15(18): 13379.
[4] DE DIVITIIS L, BECATTINI F, BAECCHI C, et al. Disentangling features for fashion recommendation[J]. ACM Transactions on Multimedia Computing, Communications, and Applications, 2023, 19(Sup.1): 1-21.
[5] BECATTINI F, DE DIVITIIS L, BAECCHI C, et al. Fashion recommendation based on style and social events[J]. Multimedia Tools and Applications, 2023, 82(24): 38217-38232.
[6] ZHOU X X, XU Y H. Conjoint analysis of consumer preferences for dress design[J]. International Journal of Clothing Science and Technology, 2019, 32(1): 73-84.
[7] YUE X D, ZHANG C, FUJITA H, et al. Clothing fashion style recognition with design issue graph[J]. Applied Intelligence, 2021, 51(6): 3548-3560.
[8] LI W Q, XU B G. Aspect-based fashion recommendation with attention mechanism[J]. IEEE Access, 2020(8): 141814-141823.
[9] KUMAR S. Deep learning based affective computing[J]. Journal of Enterprise Information Management, 2021, 34(5): 1551-1575.
[10] YU H T, CHEN X Y, HUANG R B, et al. Untrained deep learning-based phase retrieval for fringe projection profilometry[J]. Optics and Lasers in Engineering, 2023, 164: 107483.
[11] MO S W, LU P, LIU X Y. AI-generated face image identification with different color space channel combinations[J]. Sensors, 2022, 22(21): 8228.
[12] VINH P C. Special issue on context-aware computing: theory and applications[J]. Concurrency and Computation: Practice and Experience, 2021, 33(2): 1-12.
[13] GUAN C Y, QIN S F, LONG Y. Apparel-based deep learning system design for apparel style recommendation[J]. International Journal of Clothing Science and Technology, 2019, 31(3): 376-389.
[14] 刘红文,王圆圆,黄智高,等.基于消费情感体验的国潮T恤产品魅力属性研究[J].丝绸,2022,59(2):55- 67.
LIU Hongwen, WANG Yuanyuan, HUANG Zhigao, et al. A study on the attractive quality attributes of Guochao T-shirt products based on consumer emotional experience[J].Journal of Silk,2022,59(2):55-67.(in Chinese)
[15] 陈弈菲, 刘驰, 杨萌. 基于情绪测量的文胸结构情感计算研究[J]. 现代纺织技术, 2022, 30(2): 208-215.
CHEN Yifei, LIU Chi, YANG Meng. Research on emotional calculation of bra structure basedon emotional measurement[J]. Advanced Textile Technology, 2022, 30(2): 208-215.(in Chinese)
[16] HAN S S, LIU C M, CHEN K Y, et al. A tourist attraction recommendation model fusing spatial, temporal, and visual embeddings for flickr-geotagged photos[J]. ISPRS International Journal of Geo-Information, 2021, 10(1): 20.
[17] MO D M, ZOU X X, PANG K C, et al. Towards private stylists via personalized compatibility learning[J]. Expert Systems with Applications, 2023, 219: 119632.
[18] BALIM C, ?ZKAN K. Diagnosing fashion outfit compatibility with deep learning techniques[J]. Expert Systems with Applications, 2023, 215: 119305.
[19] LI P, CHEN J H. A model of an e-customized co-design system on garment design[J]. International Journal of Clothing Science and Technology, 2018, 30(5): 628- 640.
[20] CHEN W B, LI J C, SHI H B, et al. An adaptive multi-sensor visual attention model[J]. Neural Computing and Applications, 2022, 34(9): 7241-7252.
[21] VAN KLEEF E, VAN TRIJP H C M, LUNING P. Internal versus external preference analysis: an exploratory study on end-user evaluation[J]. Food Quality and Preference, 2006, 17(5): 387-399.
[22] PEREIRA A M, MOURA J A B, COSTA E B, et al. Customer models for artificial intelligence-based decision support in fashion online retail supply chains[J]. Decision Support Systems, 2022, 158: 113795.
[23] HONG Y, GUO S, ZENG X Y, et al. Human cognition modeling for the metaverse-oriented design system[J]. IEEE Network, 2024(9): 1-10.
[24] DAI X Q, HONG Y. Fabric mechanical parameters for 3D cloth simulation in apparel CAD: a systematic review[J]. Computer-Aided Design, 2024, 167: 103638.
[25] JO J, LEE S, LEE C, et al. Development of fashion product retrieval and recommendations model based on deep learning[J]. Electronics, 2020, 9(3): 508.
[26] PARK S J, KANG C U, BYUN Y. Extreme gradient boosting for recommendation system by transforming product classification into regression based on multi-dimensional Word2Vec[J]. Symmetry-Basel, 2021, 13(5): 16.
[27] SEBALD A K, JACOB F. What help do you need for your fashion shopping? A typology of curated fashion shoppers based on shopping motivations[J]. European Management Journal, 2020, 38(2): 319-334.
[28] WANG W, FANG Y, NAGAI Y, et al. Integrating interactive clothing and cyber-physical systems: a humanistic design perspective[J]. Sensors(Basel, Switzerland), 2019, 20(1): 127.
[29] BELLINI P, PALESI L A I, NESI P, et al. Multi clustering recommendation system for fashion retail[J]. Multimedia Tools and Applications, 2023, 82(7): 9989-10016.
[30] MO X H, SUN E L, YANG X. Consumer visual attention and behaviour of online clothing[J]. International Journal of Clothing Science and Technology, 2021, 33(3): 305-320.
[31] ZOU Y X, WANG Y, LUH D B. Application and parametric design of line visual illusion graphics in clothing[J]. Fibres and Textiles in Eastern Europe, 2023, 31(2): 65-74.
[32] WANG S Y, QIU J T. A deep neural network model for fashion collocation recommendation using side information in e-commerce[J]. Applied Soft Computing, 2021, 110: 107753.
[33] ZHAO L H, LIU S L, ZHAO X M. Big data and digital design models for fashion design[J]. Journal of Engineered Fibers and Fabrics, 2021(16): 1-8.
[34] RAAD H, RASHID F K M. The metaverse: applications, concerns, technical challenges, future directions and recommendations[J]. IEEE Access, 2023(11): 850-861.
[35] HAN C, LEI S, ZHANG S,et al. Man-algorithm cooperation intelligent design of clothing products in multi links[J]. Fibres and Textiles in Eastern Europe, 2022, 30(1): 59- 66.
[36] IROVAN M. Digital methods in the development of adaptive clothing for people with disabilities[J]. Industria Textile, 2023, 74(1): 28-34.
[37] ABUGABAH A, CHENG X C, WANG J F. Learning context-aware outfit recommendation[J]. Symmetry, 2020, 12(6): 873.
[38] SCHERER K R. Emotion and emotional competence: conceptual and theoretical issues for modelling agents[J]. Series in Affective Science, 2010(1): 3-20.
[39] MEKRUKSAVANICH S, JITPATTANAKUL A. Deep convolutional neural network with RNNs for complex activity recognition using wrist-worn wearable sensor data[J]. Electronics, 2021, 10(14): 1685.
[40] SCHULLER S B W. A review on five recent and near-future developments in computational processing of emotion in the human voice[J]. Emotion Review, 2021, 13(1): 44-50.
[41] NOROOZI F. Survey on emotional body gesture recognition[J]. Journal of IEEE Transactions on Affective Computing, 2021, 12(2): 505-523.
[42] ERIC O, GYENING R M O M, APPIAH O, et al. Cocoa beans classification using enhanced image feature extraction techniques and a regularized Artificial Neural Network model[J]. Engineering Applications of Artificial Intelligence, 2023, 125: 106736.
[43] RAHMAN A B S, TA H T, NAJJAR L, et al. DepressionEmo: a novel dataset for multilabel classification of depression emotions[J]. Journal of Affective Disorders, 2024, 366: 445- 458.
[44] EKMAN P. Emotions revealed: recognizing faces and feelings to improve communication and emotional life[M]. New York: Times Books, 2003.
[45] BOTA P J, WANG C, FRED A L N, et al. A review, current challenges, and future possibilities on emotion recognition using machine learning and physiological signals[J]. IEEE Access, 2020(7): 140990-141020.
[46] GARCIA-MARTINEZ B, MARTINEZ-RODRIGO A, ALCARAZ R, et al. A review on nonlinear methods using electroencephalographic recordings for emotion recognition[J]. IEEE Transactions on Affective Computing, 2021, 12(3): 801-820.
[47] ALARC?O S M, FONSECA M J. Emotions recognition using EEG signals: a survey[J]. IEEE Transactions on Affective Computing, 2019, 10(3): 374-393.
[48] ALOM M Z, TAHA T, YAKOPCIC C, et al. The history began from AlexNet: a comprehensive survey on deep learning approaches[J]. ArXiv, 2018: 1-39.
[49] TAO J H, GU Y H, SUN J Z, et al. Research on vgg16 convolutional neural network feature classification algorithm based on transfer learning[C]//2021 2nd China International SAR Symposium. Shanghai: IEEE, 2021: 1-3.
[50] YIN R C, LI P, WANG B. Sentiment lexical-augmented convolutional neural networks for sentiment analysis[C]//2017 IEEE Second International Conference on Data Science in Cyberspace. Shenzhen: IEEE, 2017: 630- 635.
[51] CONNEAU A, SCHWENK H, BARRAULT L, et al. Very deep convolutional networks for text classification[J]. Computation and Language,2017(1): 1606.
[52] JOHNSON R, ZHANG T. Deep pyramid convolutional neural networks for text categorization[C]//Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics. Vancouver: Association for Computational Linguistics, 2017: 562-570.
[53] HUANG B X, CARLEY K M. Parameterized convolu-tional neural networks for aspect level sentiment classification[J]. Association for Computational Linguistics, 2018(1): 1091-1096.
[54] 任若安, 杨方超, 孙捷. 设计学视角下的数字时尚发展与逻辑[J]. 服装学报, 2024, 9(2): 127-136.
REN Ruo’an, YANG Fangchao, SUN Jie. Development and logic of digital fashion from a design perspective[J]. Journal of Clothing Research, 2024, 9(2): 127-136.(in Chinese)
[55] MALHI U S, ZHOU J F, YAN C R, et al. Unsupervised deep embedded clustering for high-dimensional visual features of fashion images[J]. Applied Sciences, 2023, 13(5): 2828.
[56] WANG Y Z, LIU L, FU X D, et al. MCCP: multi-modal fashion compatibility and conditional preference model for personalized clothing recommendation[J]. Multimedia Tools and Applications, 2024, 83(4): 9621-9645.
[57] 顾冰菲, 张健, 徐凯忆, 等. 基于聚类和形态参数的人体体型分析研究进展[J]. 服装学报, 2023, 8(4): 307-314.
GU Bingfei, ZHANG Jian, XU Kaiyi, et al. Research progress of human body shape analysis based on clustering and morphological parameters[J]. Journal of Clothing Research, 2023, 8(4): 307-314.(in Chinese)
[58] HONG Y, XUE Z B, LIU C Y, et al. Development of mask design knowledge base based on sensory evaluation and fuzzy logic[J]. Autex Research Journal, 2021, 21(2): 224-230.
(责任编辑:沈天琦)