[1]刘 康,马浩然,邢 乐*.基于生成对抗网络的中式婚服设计[J].服装学报,2024,9(03):208-214.
 LIU Kang,MA Haoran,XING Le*.Chinese Wedding Dress Design Based on Generative Adversarial Network[J].Journal of Clothing Research,2024,9(03):208-214.
点击复制

基于生成对抗网络的中式婚服设计()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年03期
页码:
208-214
栏目:
服装智造
出版日期:
2024-07-01

文章信息/Info

Title:
Chinese Wedding Dress Design Based on Generative Adversarial Network
作者:
刘 康1; 2;  马浩然3;  邢 乐*1; 2
1. 江南大学 数字科技与创意设计学院,江苏 无锡 214400; 2. 江南大学 江苏省非物质文化遗产研究基地,江苏 无锡 214122; 3.江南大学 设计学院,江苏 无锡 214122
Author(s):
LIU Kang1; 2;  MA Haoran3;  XING Le*1; 2
1. School of Digital Technology and Innovation Design, Jiangnan University, Wuxi 214400,China; 2. Jiangsu Intangible Cultural Heritage Research Base, Jiangnan University, Wuxi 214122,China; 3.School of Design,Jiangnan University, Wuxi 214122,China
分类号:
TS 941.26
文献标志码:
A
摘要:
为了解决传统中式婚服设计开发方法存在费时及效率低下的问题,提出将深度学习技术引入到中式婚服设计中,采用基于Pix2Pix算法模型的生成式设计方法,通过爬虫技术获取中式婚服图像数据,并对样本数据进行筛选以及轮廓特征、边缘特征和语义特征的标注,进而展开由单特征控制条件生成与特征联合控制条件生成两组实验。研究表明,联合控制条件生成的“递进式生成法”结合了生成对抗网络与条件图像生成方法的优势,服装特征标注被用作条件以增加服装图像生成过程的可控性,相较于“单特征控制条件生成”的细节调控能力更强,该结果可为中式婚服设计开发提供思路。
Abstract:
In order to solve the time-consuming and low-efficiency problems in traditional Chinese wedding dress design and development methods, this study introduced deep learning technology into Chinese wedding dress design. It proposed a generative design method based on the Pix2Pix algorithm model. The Chinese wedding dress data was obtained through crawler technology. It annotated contour features, edge features and semantic features, and then launched two sets of experiments consisting of single feature control condition generation and feature joint control condition generation. The research shows that the "progressive generation method" that jointly controls conditional generation combines the advantages of generative adversarial networks and conditional image generation methods. Clothing feature annotations were used as conditions to enhance the controllability of the clothing image generation process. Compared to "single feature control condition generation", this approach offers superior detailed control capabilities, providing ideas for the design and development of Chinese wedding dress.

参考文献/References:

[1] 陈涵, 沈雷, 汪鸣明, 等. 基于生成对抗网络的书法纺织图案设计开发[J]. 丝绸, 2021, 58(2): 137-141.
CHEN Han, SHEN Lei, WANG Mingming, et al. Design and development of calligraphy textile patterns based on generative adversarial network[J]. Journal of Silk, 2021, 58(2): 137-141.(in Chinese)
[2] 陈佳, 杨聪聪, 刘军平, 等. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(1): 171-178.
CHEN Jia, YANG Congcong, LIU Junping, et al. Cross-domain generation for transferring hand-drawn sketches to garment images[J]. Journal of Textile Research, 2023, 44(1): 171-178.(in Chinese)
[3] KANG W C, FANG C, WANG Z W, et al. Visually-aware fashion recommendation and design with generative image models[C]//2017 IEEE International Conference on Data Mining(ICDM). New Orleans:IEEE, 2017: 207-216.
[4] 杨争妍, 薛文良, 张传雄, 等. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(7): 164-168.
YANG Zhengyan, XUE Wenliang, ZHANG Chuanxiong, et al. Recommendations for user’s bottoms matching based on generative adversarial networks[J]. Journal of Textile Research, 2021, 42(7): 164-168.(in Chinese)
[5] 管绍春, 向宇. 基于生成对抗网络的服装图像风格迁移[J]. 电脑知识与技术, 2019, 15(26): 191-193.
GUAN Shaochun, XIANG Yu. Style transfer of clothing image based on generative confrontation network[J]. Computer Knowledge and Technology, 2019, 15(26): 191-193.(in Chinese)
[6] GOODFELLOW I, POUGET-ABADIE J, MIRZA M, et al. Generative adversarial networks[J]. Communications of the ACM, 2020, 63(11): 139-144.
[7] 施倩, 罗戎蕾. 基于生成对抗网络的服装图像生成研究进展[J]. 现代纺织技术, 2023, 31(2): 36- 46.
SHI Qian, LUO Ronglei. Research progress of clothing image generation based on generative adversarial networks[J]. Advanced Textile Technology, 2023, 31(2): 36- 46.(in Chinese)
[8] 张彬, 周粤川, 张敏, 等. 生成对抗网络改进角度与应用研究综述[J]. 计算机应用研究, 2023, 40(3): 649- 658.
ZHANG Bin, ZHOU Yuechuan, ZHANG Min, et al. Review of research on improvement and application of generative adversarial networks[J]. Application Research of Computers, 2023, 40(3): 649- 658.(in Chinese)
[9] 陈佛计, 朱枫, 吴清潇, 等. 生成对抗网络及其在图像生成中的应用研究综述[J]. 计算机学报, 2021, 44(2): 347-369.
CHEN Foji, ZHU Feng, WU Qingxiao, et al. A survey about image generation with generative adversarial nets[J]. Chinese Journal of Computers, 2021, 44(2): 347-369.(in Chinese)
[10] ISOLA P, ZHU J Y, ZHOU T H, et al. Image-to-image translation with conditional adversarial networks[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Honolulu:IEEE, 2017: 5967-5976.
[11] 马永杰, 徐小冬, 张茹, 等. 生成式对抗网络及其在图像生成中的研究进展[J]. 计算机科学与探索, 2021, 15(10): 1795-1811.
MA Yongjie, XU Xiaodong, ZHANG Ru, et al. Generative adversarial network and its research progress in image generation[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15(10): 1795-1811.(in Chinese)
[12] BARDIS M, HOUSHYAR R, CHANTADULY C, et al. Deep learning with limited data: organ segmentation performance by U-net[J]. Electronics, 2020, 9(8): 1199.
[13] VAISHNAV M, CADENE R, ALAMIA A, et al. Understanding the computational demands underlying visual reasoning[J]. Neural Computation, 2022, 34(5): 1075-1099.(责任编辑:张 雪)

相似文献/References:

[1]韩曙光,姜凯文,赵丽妍.基于深度学习的服装三要素识别[J].服装学报,2022,7(05):399.
 HAN Shuguang,JIANG Kaiwen,ZHAO Liyan.Recognition of Clothing "Three Elements" Based on Deep Learning[J].Journal of Clothing Research,2022,7(03):399.
[2]肖红梅,王伟珍*,房 媛.基于生成对抗网络的女上装图像属性编辑[J].服装学报,2024,9(01):42.
 XIAO Hongmei,WANG Weizhen*,FANG Yuan.Image Attribute Editing of Women’s Tops Based on Generating Adversarial Networks[J].Journal of Clothing Research,2024,9(03):42.
[3]季 勇,仇明慧,魏 佳,等.人体模型建模中全局映射智能估计人体形状的方法[J].服装学报,2024,9(03):223.
 JI Yong,QIU MINGHui,WEI Jia,et al.Intelligent Estimation Method of Human Body Shape in Human Body Modeling[J].Journal of Clothing Research,2024,9(03):223.

更新日期/Last Update: 2024-06-30