[1]彭会齐,陈敏之*.基于YOLOv8的女西裤板型弊病检测与修正[J].服装学报,2024,9(01):27-35.
 PENG Huiqi,CHEN Minzhi*.Detection and Correction of Women’s Pants Pattern Defects Based on YOLOv8[J].Journal of Clothing Research,2024,9(01):27-35.
点击复制

基于YOLOv8的女西裤板型弊病检测与修正()
分享到:

《服装学报》[ISSN:2096-1928/CN:32-1864/TS]

卷:
第9卷
期数:
2024年01期
页码:
27-35
栏目:
服装工程
出版日期:
2024-03-01

文章信息/Info

Title:
Detection and Correction of Women’s Pants Pattern Defects Based on YOLOv8
作者:
彭会齐1;  陈敏之*1; 2
1.浙江理工大学 服装学院,浙江 杭州 310018; 2.浙江理工大学 国际教育学院,浙江 杭州 310018
Author(s):
PENG Huiqi1;  CHEN Minzhi*1; 2
1. School of Fashion Design and Engineering,Zhejiang Sci-Tech University, Hangzhou 310018, China; 2. School of International Education,Zhejiang Sci-Tech University, Hangzhou 310018, China
分类号:
TS 941.26
文献标志码:
A
摘要:
在服装定制成衣试穿环节,由于人体体型多样性,经常出现服装试穿不合身的情况。为协助改衣师快速准确找到板型问题及修改方案,以女西裤为例,收集常见的女西裤弊病图像(前裆堆量明显、前裆猫须明显、后片夹裆和后片大腿根堆斜褶明显)作为数据集,并采用深度学习算法中的YOLOv8模型进行实验。研究表明:模型测试阶段,精确度、召回率、平均精度均值(Iou=50%)均达到98%以上,同时结合弊病修正实验验证了弊病修正建议的合理性,实现了女西裤板型弊病的智能检测与修正。
Abstract:
Due to the diversity of human body types, the garments are usually unfit during the trying on process. In order to assist the pattern makers to find and solve the pattern problems, this paper took women’s pants as an example, summarized common images of women’s trouser malpractices as datasets, including obvious front crotch excess, obvious cat whiskers in the front crotch, pinched crotch in the back piece, and obvious diagonal folds in the thigh-root in the back piece, and conducted experiments using the YOLOv8 model in deep learning algorithms. In the model testing stage, the accuracy, recall rate, and (-overP)A(Iou=50%)all reached over 98%. At the same time, the rationality of the defect correction suggestions was verified through defect correction experiments. The study achieved intelligent detection and correction of defects in women’s trousers.

参考文献/References:

[1] 吴迪冲, 顾新建. 服装大规模定制及其结构体系研究[J]. 纺织学报, 2004, 25(5): 139-141, 153.
WU Dichong, GU Xinjian. Characteristics analysis of mass customization of costume[J]. Journal of Textile Research, 2004, 25(5): 139-141, 153.(in Chinese)
[2] 阮梦玉.基于深度学习的织物疵点检测研究[D].武汉:武汉纺织大学,2023.
[3] ?AM K, AYDIN C, TARHAN C. Classification of fabric defects using deep learning algorithms[C]//2022 Innovations in Intelligent Systems and Applications Conference(ASYU).Turkey:IEEE, 2022: 1-6.
[4] YASAR ?,FATMA G,SEMIH U,et al. Determination of various fabric defects using different machine learning techniques[J]. The Journal of the Textile Institute, 2023: 1-11.
[5] 郝潇潇. 基于图像处理技术的男西装袖样板弊病检测及修正[D]. 郑州: 中原工学院, 2022.
[6] 张明艳. 基于图像分析的服装缝线疵点的识别研究[D]. 上海: 东华大学, 2008.
[7] 艾泳宏. 制衣裁片缺陷检测及定位系统研究[D]. 西安: 西安工程大学, 2017.
[8] 杨敏华. 常见样裤的弊病观察与结构修正[J]. 上海纺织科技, 2011, 39(12): 26-28.
YANG Minhua. Common wrongs and trouser pattern structure modification[J]. Shanghai Textile Science and Technology, 2011, 39(12): 26-28.(in Chinese)
[9] 端丹. 基于体表剥离法的裤子合体性研究[D]. 杭州: 浙江理工大学, 2013.
[10] 朱娜, 刘娟, 崔敬兰, 等. 西裤归拔工艺分析与研究[J]. 科技信息(学术研究), 2008(25): 200-201.
ZHU Na, LIU Juan, CUI Jinglan, et al. Analysis and research on the drawing process of trousers[J]. Science and Technology Information(Academic Research),2008(25): 200-201.(in Chinese)
[11] 罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6): 1230-1239.
LUO Huilan, CHEN Hongkun. Survey of object detection based on deep learning[J]. Acta Electronica Sinica, 2020, 48(6): 1230-1239.(in Chinese)
[12] GUO J M, LOU H T, CHEN H N, et al. A new detection algorithm for alien intrusion on highway[J]. Scientific Reports, 2023, 13: 10667.
[13] 周颖, 颜毓泽, 陈海永, 等. 基于改进YOLOv8的光伏电池缺陷检测[J]. 激光与光电子学进展, 2023(18): 1-17.
ZHOU Ying, YAN Yuze, CHEN Haiyong, et al. Defect detection of photovoltaic cells based on improved YOLOV8[J]. Laser and Optoelectronics Progress, 2023(18): 1-17.(in Chinese)
[14] DIWAN T, ANIRUDH G, TEMBHURNE J V. Object detection using YOLO: challenges, architectural successors, datasets and applications[J]. Multimedia Tools and Applications, 2023, 82(6): 9243-9275.
[15] 倪云峰,霍洁,侯颖等.基于YOLOv8—OCR的井下人员检测算法[EB/OL].(2023-09-25)[2024-01-06].http: // kns.cnki.net/kcms/detail/13.1097.TN.20230922.
1604.015.html.
[16] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once: unified, real-time object detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).USA: IEEE, 2016: 779-788.
[17] 王芋人, 武德安. 一种提高小目标检测准确率的数据增强方法[J]. 激光杂志, 2021, 42(11): 41- 45.
WANG Yuren, WU Dean. Data augmentation method for improving the accuracy of small target detection[J]. Laser Journal, 2021, 42(11): 41- 45.(in Chinese)
[18] 熊能.世界经典服装设计与纸样:基础原理篇[M].南昌:江西美术出版社,2009:65- 66.
(责任编辑:张 雪)

相似文献/References:

[1]韩曙光,姜凯文,赵丽妍.基于深度学习的服装三要素识别[J].服装学报,2022,7(05):399.
 HAN Shuguang,JIANG Kaiwen,ZHAO Liyan.Recognition of Clothing "Three Elements" Based on Deep Learning[J].Journal of Clothing Research,2022,7(01):399.

更新日期/Last Update: 2024-02-29